

Enhancing Centralised Log Management for

Distributed WordPress Sites with ELK Stack

An applied research project presented in partial fulfilment of the requirements

for the degree of

Master of Information Technology

at Whitireia/WelTec, Wellington, New Zealand

Jigang Guo

2025

ii

ABSTRACT

Maintaining distributed WordPress websites across different servers can be a demanding task,

especially for developers or system admins managing them alone. Relying on manual methods

to check for security issues, track how resources are being used, or review log files often

requires a lot of time and leaves room for mistakes. This project investigates using the ELK

stack - Elasticsearch, Logstash, and Kibana - as a centralised solution to simplify these tasks.

The goal is to see if ELK can make it easier to monitor and manage multiple WordPress setups

by offering real-time data and automatic alerts.

The study centres on three main areas: spotting security threats, keeping an eye on server

performance and usage, and interpreting meaningful application logs. I will compare ELK’s

performance to that of traditional, manual logging practices, focusing on efficiency, accuracy,

and system safety. By doing so, I aim to understand whether ELK truly offers practical

improvements. The results should provide helpful suggestions for WordPress users or

administrators who are considering choosing modern monitoring tools to supervise websites.

Ideally, the study will show how ELK used as a centralised log system can ease maintenance

tasks, reduce the workload on administrators, and make WordPress sites more secure and

stable.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Clement Swarnappa, for his

invaluable guidance, support, and encouragement throughout the course of this research. His

insightful feedback and patient instruction have greatly contributed to the development and

completion of this project.

I would also like to thank my lecturers and classmates at Whitireia and WelTec for their

continuous support and inspiration during my studies.

Finally, I am deeply grateful to my family for their unwavering love and encouragement, which

have been a source of strength throughout my academic journey.

iv

TABLE OF CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... iii
LIST OF TABLES ... vi
LIST OF FIGURES ... vii
LIST OF ABBREVIATIONS .. xi
CHAPTER 1 INTRODUCTION ... 1

1.1 General Background ... 1
1.2 Significance of the Study .. 2
1.3 Scope of Study .. 2
1.4 Research Problem ... 2
1.5 Research Questions ... 3
1.6 Research Objectives .. 3
1.7 Thesis Organisation... 4

CHAPTER 2 LITERATURE REVIEW .. 6
2.1 Importance of Log Data Analysis ... 6
2.2 Centralised Log Management Overview .. 7
2.3 The ELK Stack in Log Management .. 7
2.2.1 Beats Module ... 8
2.2.2 Structured vs. Unstructured Data ... 10
2.2.3 Elasticsearch Module ... 11
2.2.4 Logstash Module ... 13
2.2.5 Kibana Module .. 13
2.2.6 Application of ELK Stack ... 14
2.4 Security Monitoring through Log Analysis .. 15
2.5 Resource Utilisation Monitoring ... 15
2.6 Overview of WordPress .. 16
2.7 WordPress Management Challenges .. 27
2.8 Existing Solutions for WordPress Monitoring .. 27
2.9 Gaps in the Current Research.. 28
2.10 Summary ... 28

CHAPTER 3 METHODOLOGY .. 28
3.1 Introduction ... 28
3.2 Design Science Research Overview ... 29
3.3 Problem Identification Stage ... 29
3.4 Solution Objectives Stage ... 30
3.5 Design and Development Stage .. 31

3.5.1 Architecture Overview... 32
3.5.2 Artefact Configuration Overview .. 33

3.5.2.1 WordPress and MySQL Services 34
3.5.2.2 Reverse Proxy with Nginx ... 35
3.5.2.3 Log Collection: Filebeat ... 37
3.5.2.4 Resource Monitoring: Metricbeat..................................... 39
3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash,

Kibana .. 39
3.5.3 Log Collection Pipeline ... 40

v

3.5.3.1 Filebeat Configuration .. 40
3.5.3.2 Logstash Configuration .. 42

3.5.4 Custom Logging Extensions .. 44
3.5.4.1 Custom Plugin: Slow Query Simulator 44
3.5.4.2 Custom Plugin: User Activity Logger 45

3.5.5 Kibana Configuration .. 46
3.5.5.1 Index Creation in Kibana.. 46
3.5.5.2 Alerts Rule Configuration .. 47
3.5.5.3 Dashboard Creation in Kibana ... 49

3.5.6 Brute-Force Detection Script for WordPress Login
Attempts ... 54

3.5.7 User Behaviour Log Analysis Script ... 55
3.6 Evaluation Stage ... 56

3.6.1 Brute-Force Attack Detection and Alerting 57
3.6.2 System Performance and Slow Query Monitoring 57
3.6.3 User Behaviour Analysis ... 57
3.6.4 Summary .. 58

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 58
4.1 Introduction to Experimental Setup .. 58

4.1.1 Experimentation on Security Monitoring 59
4.1.1.1 Discussion .. 60

4.1.2 Experimentation on Performance Monitoring 61
4.1.2.1 MySQL Slow Query monitoring 64
4.1.2.2 Discussion .. 65

4.1.3 Experimentation on Decision-Making Support Using
Custom User Activity Logs ... 66
4.1.3.1 Discussion .. 68

4.2 Summary ... 69
CHAPTER 5 CONCLUSION AND FUTURE WORK .. 69

5.1 Conclusion .. 69
5.2 Recommendations and Future Work... 70
5.3 Limitations .. 70

REFERENCES .. 71
APPENDICES ... 74

vi

LIST OF TABLES

Table No. Page No.

Table 1:Beats library from the Elastic ... 9

vii

LIST OF FIGURES

Figure No. Page No.

Figure 1: ELK workflow pipeline ... 8

Figure 2: Comparison between Structured and Unstructured Data 11

Figure 3: How does Elasticsearch works? ... 12

Figure 4: WordPress Block Editor ... 17

Figure 5: Popular WordPress plugins ... 18

Figure 6: Popular WordPress themes .. 19

Figure 7: Official website of Taylor Swift .. 21

Figure 8: Official website of Disney Books .. 22

Figure 9: Official website of Sony Music ... 23

Figure 10: The official website of Time magazine .. 25

Figure 11 System Architecture ... 33

Figure 12: WordPress1 Service in Docker Compose .. 34

Figure 13: WordPress2 Service in Docker Compose .. 35

Figure 14: MySQL 1 Service in Docker Compose .. 35

Figure 15:MySQL2 Service in Docker Compose ... 35

viii

Figure 16: Nginx Service in Docker Compose ... 36

Figure 17: Nginx Configuration ... 37

Figure 18: Filebeat1 Service in Docker Compose ... 38

Figure 19: Filebeat2 Service in Docker Compose ... 38

Figure 20: Filebeat-kibana Service in Docker Compose .. 38

Figure 21: Metricbeat Services in Docker Compose .. 39

Figure 22: Elasticsearch Service in Docker Compose .. 40

Figure 23: Filebeat 1 Configuration ... 41

Figure 24: Filebeat 2 Configuration ... 42

Figure 25: Logstash Configuration .. 44

Figure 26:Slow Query Simulator Plugin.. 45

Figure 27: User Activity Log Plugin... 46

Figure 28: Index Patterns Created in Kibana ... 47

Figure 29: Alert Rule Created in Kibana .. 48

Figure 30: Alert Rule Configuration .. 49

Figure 31: Count of Visitors Created in Dashboard ... 50

Figure 32: Count of Visitors Configuration in Dashboard 50

ix

Figure 33: User Duration Time Created in Dashboard ... 51

Figure 34: User Duration Time Vertical Axis Configuration in Dashboard 51

Figure 35: User Duration Time Horizontal Axis Configuration in Dashboard ... 52

Figure 36: Count of Users Scroll Down 50% Created in Dashboard 52

Figure 37: Count of Users Scroll Down 50% Configuration in Dashboard 53

Figure 38: Users Triggered Click Event Times Created in Dashboard 53

Figure 39: Users Triggered Click Event Times Configuration in Dashboard 54

Figure 40: Shell Script to Calculate Brute-Force Times .. 55

Figure 41: Shell Script to Analysis User Behaviours .. 56

Figure 42: User Login Records in Apache Log ... 59

Figure 43: Result of User Login Times by Shell Script .. 59

Figure 44: User Login Logs Appeared in Kibana ... 60

Figure 45: Alert Message Stored in Kibana Log ... 60

Figure 46: Alert Email Received From Kibana Log ... 60

Figure 47: Metricbeat Containers Running Status... 61

Figure 48: Metrics Collected By Metricbeats in Dashboard 61

Figure 49: Metrics Collected by Metricbeat 1 ... 62

x

Figure 50: Metrics Collected by Metricbeat 2 ... 62

Figure 51: Logs Collected by Metricbeat 1 Shown in Kibana 63

Figure 52: Logs Collected by Metricbeat 2 Shown in Kibana 63

Figure 53: Metrics Shown on WordPress 1 Server by HTOP 63

Figure 54: Metrics Shown on WordPress 2 Server by HTOP 64

Figure 55: Slow SQL Query Result .. 64

Figure 56: Slow SQL Query Raw Logs .. 65

Figure 57: Slow SQL Query Logs Shown in Kibana .. 65

Figure 58: Alert Message of Slow SQL Query Via Email Notification 65

Figure 59: An E-Commerce Store Built On Kadence Theme 67

Figure 60: User Behaviour Raw Logs .. 67

Figure 61: User Behaviour Stats Shown in Dashboard ... 68

Figure 62: User Behaviour Stats Calculated By Shell Script 68

Figure 63: User Behaviour Logs Shown in Kibana .. 68

xi

LIST OF ABBREVIATIONS

Centralised Log Management CLM

Elasticsearch, Logstash, Kibana ELK

Content Management System CMS

Online Analytical Processing OLAP

Advanced Persistent Threats APT

Security Information and Event Management SIEM

1

CHAPTER 1 INTRODUCTION

1.1 General Background

In recent years, the popularity of WordPress has surged, making it one of the most widely used

content management systems (CMS) globally. Many developers and website administrators

manage multiple WordPress sites simultaneously, especially within small to medium-sized

enterprises (Toddplex, 2016). Due to its user-friendly interface and rich ecosystem of plugins,

many non-technical users feel confident managing their sites (Murphy et al., 2021). However,

this ease of use can lead to overconfidence, resulting in risky actions such as installing insecure

plugins or modifying unfamiliar settings, potentially compromising the website’s security and

performance. Even minor issues can cause user dissatisfaction or financial losses (Sunil et al.,

2023). From a developer’s perspective, it becomes crucial to establish mechanisms for quickly

identifying and resolving system anomalies or bugs introduced by non-technical users. Log

tracking and analysis are key techniques in this regard, enabling early detection of errors or

warnings and providing actionable insights for system optimisation and user experience

improvements. Most industries maintain real-time alert tools to ensure system safety and

stability, and make this a top priority (He et al., 2022). However, log management in practice

presents numerous challenges, particularly in industrial contexts. These include the high

volume and complexity of log data, heterogeneous log formats, and difficulties in correlating

and understanding log content. System maintenance, along with troubleshooting, becomes

excessively complex when key data is hidden deep within extensive log records. Finding the

specific reason behind an issue within such datasets proves both time-consuming and

frustrating. The practice of manual monitoring through traditional methods tends to be

inefficient and laborious, and the complexity of modern IT systems makes manual log

interpretation increasingly impossible. These approaches create space for human mistakes and

2

oversight which raises the probability of security breaches, resource exhaustion and outdated

software component usage. Many standard logging tools fail to effectively display complex

system data through clear visual presentations (Sunil et al., 2023). A centralised log

management system serves as the main solution to address the problems of log monitoring.

The ELK stack represents the most widely used solution because it consists of Elasticsearch,

Logstash and Kibana as an open-source suite (Ahmed et al., 2020). The ELK system provides

real-time data analysis through interactive dashboards that display visualised metrics which

makes it valuable for understanding system health and user behaviours. This research evaluates

ELK stack implementation in distributed WordPress networks to assess its effectiveness for

website monitoring as well as fault detection and user behaviour analysis.

1.2 Significance of the Study

This research aims to construct a project that decreases administrative and developer workloads

through ELK stack implementation to improve security issue detection, server resource and

performance monitoring, and application log utilisation.

1.3 Scope of Study

The research examines log data management between WordPress websites using the ELK stack

while concentrating on security vulnerability detection, system resource monitoring, and

application logs tracking. The study does not explore content management systems outside of

WordPress or WordPress installations with extensive custom modifications. The study will use

a comparative method to evaluate ELK performance against standard manual log monitoring

practices to demonstrate specific system management and efficiency benefits.

1.4 Research Problem

Maintaining multiple WordPress websites distributed across different servers or environments

presents a range of operational challenges. Developers and website administrators often face

difficulties in identifying security risks, analysing performance metrics, managing system

3

resources, and analysing user behaviours through application logs. Manual monitoring

techniques are not only labour-intensive but also prone to oversight, particularly as the number

grows. This study investigates whether the ELK stack - comprising Elasticsearch, Logstash,

and Kibana - can provide a more efficient and reliable approach for addressing these recurring

challenges. The focus is on assessing how ELK can support the centralised management and

real-time monitoring of multiple WordPress instances.

1.5 Research Questions

• In what ways does the ELK stack improve the detection of security threats across

multiple WordPress sites when compared with the traditional manual monitoring

method?

• To what extent does the ELK stack enhance visibility of system resource usage in

distributed WordPress environments?

• How effectively can the ELK stack assist in analysing user behaviour to support data-

driven decision-making?

1.6 Research Objectives

The primary objectives of this research are as follows:

To investigate how the Elastic Stack (Elasticsearch, Logstash, and Kibana) can be applied to

monitor and manage distributed WordPress environments.

To design and implement a centralised logging system that collects and analyses logs from

multiple WordPress websites.

To evaluate the effectiveness of ELK Stack in detecting potential security vulnerabilities,

resource usage, and application logs analysis in a distributed environment.

To conduct experiments that simulate different usage and attack scenarios, and measure the

system's performance, scalability, and responsiveness.

4

To propose recommendations for WordPress developers and administrators on how to integrate

ELK Stack into their systems to enhance operational efficiency and security monitoring.

1.7 Thesis Organisation

This thesis is organised into five chapters; each designed to systematically address the research

problem and contribute to the achievement of the research objectives.

• Chapter 1 – Introduction

This chapter introduces the research topic, outlining the background, problem statement,

research significance, objectives, and the scope of the study. This establishes the foundation

for the subsequent investigation into centralized logging and monitoring systems for distributed

WordPress environments.

• Chapter 2 – Literature Review

This chapter critically reviews existing studies related to the Elastic Stack components -

Elasticsearch, Logstash, and Kibana - as well as their deployment in distributed system

monitoring. Additionally, it examines previous research on WordPress performance, security

monitoring techniques, and distributed logging challenges. Gaps in the current knowledge are

identified to position this research within the broader academic context.

• Chapter 3 – Research Methodology

This chapter details the methodological approach adopted in this study. It describes the design

of the experimental environment, the configuration of the ELK Stack for log collection and

analysis, and the techniques used to simulate distributed WordPress operations. Methods for

evaluating performance, anomaly detection, and scalability are also articulated.

• Chapter 4 – Results and Discussion

This chapter presents the empirical findings derived from the experiments. It analyses system

performance metrics, evaluates the effectiveness of the ELK Stack in detecting anomalies and

5

security events, and discusses the scalability of the proposed solution. The results are critically

compared with existing benchmarks and research objectives.

• Chapter 5 – Conclusion and Future Work

This chapter presents the main research findings and contributions. The study encountered

specific challenges, which are discussed in this chapter, together with suggested directions for

future research that focus on improving centralised monitoring systems for extensive

distributed WordPress networks.

6

CHAPTER 2 LITERATURE REVIEW

2.1 Importance of Log Data Analysis

System logs serve as event records which document multiple system occurrences. System The

system generates events whenever users initiate or terminate operations and applications start

or terminate, and software gets installed or uninstalled and users modify the system clock and

finish authentication protocols. System administrators receive security breach alerts through

logs which track all unauthorized access attempts (Ahmed et al., 2020). System component

behaviour becomes most accessible for analysis through monitoring its operational activities.

System runtime logs enable developers and administrators to detect bugs, errors, and abnormal

outputs while simultaneously helping to detect security threats and possible intrusions (Svacina

et al., 2020). The output of logging statements creates unstructured printed text which results

in time-ordered text-based data collection.

A log message contains several items, which include system variables and parameters such as

hostname and username, together with message level (INFO/DEBUG/ERROR), IP address and

other items that present semantic information through plain text words (Wang, 2023). Logs

have been widely adopted in software system development and maintenance. In the IT industry,

it is a common practice to record detailed software runtime information into logs (Zhu et al.,

2023).

According to Wang et al. (2020), applying web log mining technology to the development of

e-commerce systems not only enhances user experience and supports personalised

recommendations, but also assists companies in understanding customer intent, identifying

potential users, improving website infrastructure, and advancing the overall e-commerce

industry. For effective comparison across different log files, log analysis systems must be

capable of parsing content within the specific context in which it was generated. Overall, log

7

analysis contributes not only to better business decision-making but also to improved service

quality.

2.2 Centralised Log Management Overview

In current IT systems especially those with distributed systems of many servers and services,

centralised log management (CLM) has become a key strategy. Kent (2018) points out that

when log data is brought together in one location, administrators can better understand system-

wide behaviour. The system provides administrators with enhanced visibility which enhances

their capabilities for problem debugging system protection and performance evaluation.

Through this system administrators gain access to a unified interface that enables them to

search, filter and view logs. The current method of log management through one interface

stands in sharp contrast to traditional manual approaches which required server-by-server log

searches. The traditional approach to log management proves inefficient while simultaneously

raising the chances of errors and oversight in complex system deployments.

2.3 The ELK Stack in Log Management

The ELK Stack, consisting of Beats, Elasticsearch, Logstash and Kibana, serves as a popular

open-source framework for implementing CLM. Elasticsearch operates as the central storage

system, which also functions as a search engine for log data. Logstash serves as the component

that gathers logs before transforming them, while Kibana enables users to visualise metrics and

patterns through real-time system activity monitoring. Beats serve as a lightweight data

shipping system that collects logs and metrics from different sources before sending them to

Logstash or Elasticsearch for additional processing. The ELK workflow pipeline functions as

depicted in Figure 1 when it operates. The Beats library enables installation on target servers

to send log data directly to Elasticsearch or Logstash for data processing. Elasticsearch handles

data indexing and storage operations while Kibana enables users to execute queries and create

visualisations. Instead of accessing individual servers to diagnose issues, administrators can

8

use Kibana’s dashboards to search and analyse logs across multiple systems at once. This

approach not only saves time but also enhances accuracy by enabling the correlation of events

from different machines within the same timeframe, helping to uncover underlying issues that

may span across services or servers.

Figure 1: ELK workflow pipeline

Note. The figure illustrates the ELK workflow pipeline. From What are Beats?, by

Elasticsearch B.V., 2025 (https://www.elastic.co/guide/en/beats/libbeat/current/beats-

reference.html). Copyright 2025 by Elasticsearch B.V.

2.2.1 Beats Module

The Elastic Stack includes lightweight data collection tools called Beats which efficiently

gathers data from log files network traffic, and system metrics before sending it to Logstash or

Elasticsearch for additional processing and analysis. Beats consist of multiple modules, each

designed for a specific type of data source, and are primarily used for forwarding and

centralising log data. Notably, Beats only collects data without performing any processing,

9

making them highly efficient. One of their key advantages is their low CPU and memory

consumption, which ensures minimal impact on business servers (Xu et al., 2024).

For example, Filebeat is a lightweight log shipper that reads data from local or remote log files

and forwards it to Logstash or directly to Elasticsearch. Other tools include Metricbeat, which

collects system and service metrics, and Packetbeat, which captures network traffic data, Etc.

Table 1: Beats library from the Elastic

Log Type Log Module Beat framework

Audit data Auditbeat Collects audit framework data

and monitors file integrity

Log files

Filebeat

Ships log files from various

sources

Service availability Heartbeat Checks uptime and monitors

service availability

System metrics

Metricbeat Collects CPU, memory, and

disk usage data

Network traffic

Packetbeat Analyses network packets for

performance and

troubleshooting

10

Windows event logs

Winlogbeat Winlogbeat - Lightweight

shipper for Windows event logs

Note. Adapted from https://www.elastic.co/guide/en/beats/libbeat/current/beats-

reference.html. Copyright 2025. Elasticsearch B.V.

2.2.2 Structured vs. Unstructured Data

In modern IT systems, data is generally categorised as either structured or unstructured.

Structured data refers to information that adheres to a predefined data model and is often stored

in relational databases such as MySQL or Oracle. It includes data types like names, dates, or

numerical values that are easily searchable using SQL. In real life, the objects we search for

are not always relational data. The goal of a search is to quickly locate the information that is

most relevant to a user's needs. Given that both structured and unstructured data coexist in

modern systems, the ability to accurately and efficiently retrieve information from both types

has become increasingly important.

In contrast, unstructured data lacks a consistent format and cannot be easily stored in traditional

relational databases. This category includes text documents, images, videos, and, most

relevantly, log files. Because of its inconsistent nature, unstructured data poses challenges for

storage, indexing, and analysis using traditional tools. Figure 2 shows the difference between

structured data and unstructured data in storing and retrieving data.

https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html
https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html

11

Figure 2: Comparison between Structured and Unstructured Data

Note. The figure illustrates the comparison between structured and unstructured data. From

Structured vs Unstructured Data: An Overview, by MongoDB, Inc., 2025

(https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-

unstructured). Copyright 2025 by MongoDB, Inc.

2.2.3 Elasticsearch Module

Elasticsearch is a powerful, distributed, open-source engine built on Apache Lucene that serves

as the core component of the ELK Stack. It is optimised for search and analytics across large-

scale datasets, functioning as both a scalable data store and a vector database. Elasticsearch

allows for fast indexing, storage, querying, and real-time analysis of structured and

unstructured data (Elastic Stack, 2025).

https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-unstructured
https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-unstructured

12

To address the challenges posed by unstructured data, Elasticsearch treats each piece of data

as a document, which is then indexed for rapid querying. It applies an inverted index structure

that maps each word or term to its location in the document set. During the indexing process,

Elasticsearch tokenises the data, removes stop words (such as “a”, “the” or “and”), and stores

relevant tokens in a highly searchable format. This makes it particularly well-suited for log

analysis, full-text search, and real-time data exploration at scale.

Figure 3: How does Elasticsearch work?

Note. The figure illustrates the process of how Elasticsearch works. From Elasticsearch, the

advanced Search and Analytics Engine, by Kartikay Sawhney, 2019

(https://medium.com/@kartikaysawhney1506/elasticsearch-the-advanced-search-and-

analytics-engine-8ebbe7dd39f3). Copyright 2019 by Kartikay Sawhney.

As illustrated in Figure 3, when a term is queried in Documents 1, 2 and 3, Elasticsearch can

quickly look up the term and locate it in the inverted index and retrieve the list of documents

that contain that term. During the indexing process, stop words - such as "the", "is", and "and"

https://medium.com/@kartikaysawhney1506?source=post_page---byline--8ebbe7dd39f3---------------------------------------
https://medium.com/@kartikaysawhney1506?source=post_page---byline--8ebbe7dd39f3---------------------------------------

13

- are typically filtered out to optimise the efficiency and accuracy of the search, minimise the

unnecessary matches, making it a powerful tool for handling large volumes of textual data and

providing relevant search results in near real-time.

2.2.4 Logstash Module

Logstash is a free and open-source framework designed for collecting and parsing a large

variety of both structured and unstructured data types. By unifying data collection and

transformation, Logstash allows for real-time analytics and enables structured insights from

diverse input formats (Logstash Introduction | Logstash Reference [8.17] | Elastic, 2025). As

a plugin-based event forwarder, it ingests data from multiple sources, processes it, and then

ships it to various destinations. These input plugins capture data from CSV files, TCP/UDP

sockets, and HTTP APIs. Once the data is ingested, Logstash applies filter plugins to handle

event processing, these filters transform the incoming data by removing unwanted elements,

enriching the events with additional information, and preparing them for output to the

designated targets (Bajer, 2017). In the data filtering process, the Grok filter stands as a popular

choice because it uses predefined patterns to extract structured information from unorganised

log entries. This approach enables users to efficiently parse and transform raw logs into a more

readable and analysable format. Users can also achieve advanced data processing through the

Ruby filter, which allows the embedding of custom Ruby scripts to implement complex

transformations (Doan & Iuhasz, 2016). By default, Logstash sends the processed data to

Elasticsearch as its primary output destination. However, it also supports transmitting data to

other targets, such as CSV files, relational databases, and external platforms including Azure

Machine Learning (Bajer, 2017).

2.2.5 Kibana Module

Kibana functions as the visual interface of the ELK Stack to enable users to interactively

explore and display data through a wide array of visual formats - such as bar charts, tables,

14

heatmaps, and geographic maps. Kibana operates efficiently with large volumes of data

through its web-based interface which enables users to create dynamic dashboards. Users can

interact with real-time data through the platform without programming because queries operate

using JSON-like syntax. Bhatnagar et al. (2020) state that this functionality provides users with

better access to deep system insights which leads to improved decision-making.

2.2.6 Application of ELK Stack

ELK Stack showcases practical applications in various industrial fields. In their research on a

Uday and Mamatha (2019) demonstrated how the system facilitates healthcare projects by

aggregating logs from multiple sources to achieve real-time visualisation. This assists

engineers in quick identifying which system issues require immediate attention based on their

needs, locations and severity. Therefore, this process accelerates maintenance response,

reduces system downtime. In a simulation of communication network system, ELK has been

used to manage different real-time data streams. Through Kibana's visualization feature users

can detect anomalies and monitor network traffic more effectively (Yang et al., 2022).

ELK serves as an effective cybersecurity solution to detect advanced persistent threats (APT)

because it enables real-time log processing and anomaly detection and machine learning

integration which allows security teams to detect threats rapidly (Stoleriu et al., 2021). Laingo

Nantenaina and Zo (2024) conducted research which proved that OLAP technologies work

well with ELK through Elasticsearch indexing to enhance the speed of large dataset

classification and analysis tasks under multidimensional scenarios analysis.

The log management system for Docker environments proposed by Chen et al. (2020)

combines ELK with Kafka to track logs in real-time and filter them structurally while

enhancing DevOps workflows through visualization. Smith and Jones (2020) demonstrated

Elasticsearch's real-time query functionality through Logstash data pipelines and Kibana

dashboards. Lee et al. (2021) confirmed the system's ability to scale for deployments of both

15

small and large enterprises. The ELK solution provides organizations with a budget-friendly

alternative to Splunk which enables robust security log analysis and visualization capabilities

(Son & Kwon, 2017). The ELK applications provide outstanding value to systems that require

quick decision-making insights.

2.4 Security Monitoring through Log Analysis

Security monitoring operations in the present era heavily depend on system log analysis as their

fundamental operational component. System log analysis helps identify irregular system

activities that could indicate criminal behaviours including unauthorized access attempts and

malware infections. Log analysis according to Ahmad and Patel (2019) enables the discovery

of security risks that were previously undetected. The ELK Stack generates automated alerts

for recognized attack patterns and behavioural anomalies when its configuration is correct. The

ELK system enhances its threat detection and response features through its integration with a

Security Information and Event Management (SIEM) system (Yang et al., 2022).

The log analysis system developed by Ahmed et al. (2020) protected cloud applications. The

system collected logs through Log4j before it implemented dual detection mechanisms to

detect SQL injection attacks. The system performed log analysis through two independent

methods which included both Bayesian classifier-based log categorization and visual pattern

matching for security analysts. The research showed that application security requires instant

analysis together with multiple detection approaches.

2.5 Resource Utilisation Monitoring

Resource consumption monitoring such as CPU, memory and disk storage usage helps prevent

system bottlenecks and outages. The ELK Stack enables the collection and visualisation of

such metrics, which allows administrators to detect unusual patterns or resource strains more

easily. Brown (2020) highlighted that system health information exists within log data and

ELK stack delivers exceptional value for distributed architectures because it unifies logs from

16

multiple servers that handle workload. The system enables better resource planning and system

tuning through its ability to combine performance indicators from different nodes.

2.6 Overview of WordPress

WordPress launched in 2003 has evolved into a leading content management system (CMS).

WordPress stands out for its user-friendly interface and broad plugin selection which enables

users to create everything from basic blogs to advanced e-commerce websites. Murphy et al.

(2021) stated that WordPress powers approximately 35% of internet content worldwide and is

possibly the most used content management system, serving as the back end for hundreds of

millions of websites and accounting for 60.3% of all content management systems in use.

WordPress provides an intuitive content editing interface that allows users to create and publish

content without needing to master complex programming languages (Achar, 2021). With its

"Block Editor," users can quickly build page content through drag-and-drop operations, such

as adding text, images, and videos, without writing HTML or CSS code. This simplified editing

approach dramatically lowers the barriers to website creation, making it accessible for non-

technical users to manage website content.

As shown in Figure 4, the WordPress Block Editor consists of several key components:

1. Inserter: A panel for users to insert predefined blocks into the content canvas.

2. Content canvas: The content editor, which serves as the workspace where content is

created and organised using blocks.

3. Settings Panel: A panel that allows users to configure the settings of a selected block or

adjust the settings of the entire post.

17

Figure 4: WordPress Block Editor

Note. The figure illustrates the primary elements of the Block Editor. From Block Editor

Handbook, by WordPress.ORG, 2019 (https://developer.wordpress.org/block-editor/). in the

public domain.

One of the significant advantages of WordPress is its plugin system, which allows users to add

various website features, such as SEO optimisation, e-commerce, and social media integration.

WordPress has an extensive plugin library, enabling users to install plugins as needed to extend

the website's functionality. Each plugin provides its service based on user needs, such as

enhancing search functionality, managing user permissions, and enabling electronic payments.

Figure 5 illustrates some of the most popular WordPress plugins commonly used to expand a

website’s capabilities.

18

Figure 5: Popular WordPress plugins

Note. The figure illustrates the popular plugins of WordPress. From Plugins, by

WordPress.ORG, n.d. (https://en-nz.wordpress.org/plugins/). In the public domain.

WordPress also offers powerful theme customisation options, allowing users to tailor a

website’s appearance to match branding guidelines or meet specific functional requirements.

Themes control the overall design, layout, and visual style of a site, providing both prebuilt

templates and extensive customisation possibilities.

19

Figure 6 showcases some of the most popular WordPress themes widely adopted for creating

visually appealing and professional websites.

Figure 6: Popular WordPress themes

Note. The figure illustrates the popular themes of WordPress. From Themes, by

WordPress.ORG, n.d. (https://en-nz.wordpress.org/themes/). In the public domain.

The high flexibility of plugins and themes allows WordPress to be applied to nearly any type

of website, whether it is a simple blog, a complex business website, or a feature-rich e-

commerce platform. For example, Taylor Swift's official website (shown in Figure 7), Disney

20

Books (Figure 8), Sony Music (Figure 9), and Time magazine (Figure 10) are all built on

WordPress. These examples highlight WordPress’s versatility. By leveraging a combination of

plugins and themes, developers can customise websites to meet a wide range of needs,

significantly enhancing flexibility and adaptability.

21

Figure 7: Official website of Taylor Swift

22

Note. The figure illustrates the official website of Taylor Swift. From Tayler Swift, by

taylorswift.com, n.d. (https://www.taylorswift.com/). Copyright 2019 by Taylor Nation, LLC.

Figure 8: Official website of Disney Books

23

Note. The figure illustrates the official website of Disney Books. From Disney, by

books.disney.com, n.d. (https://books.disney.com/). Copyright by Disney.

Figure 9: Official website of Sony Music

https://books.disney.com/

24

25

Note. The figure illustrates the official website of Sony Music. From Sony Music, by

sonymusic.com, n.d. (https://www.sonymusic.com/). Copyright by 2025 SONY MUSIC

ENTERTAINMENT.

Figure 10: The official website of Time magazine

http://www.sonymusic.com/
http://www.sonymusic.com/

26

27

Note. The figure illustrates the official website of Time magazine. From Time, by time.com,

n.d. (https://time.com/). Copyright by 2025 TIME USA, LLC.

2.7 WordPress Management Challenges

Although WordPress is a powerful platform, its widespread usage makes it a common target

for hackers. WordPress's most common security risks are outdated software, insecure plugins

and themes, insecure passwords, SQL injection, cross-site scripting (XSS), brute force, and file

inclusion exploits. (Yi et al., 2024). All WordPress websites are susceptible to brute force

attacks to enumerate users and their passwords with the WPSCAN tool (Shah & Ayoade,

2023). The WordPress community regularly releases security updates and patches to fix known

vulnerabilities, and administrators must keep the core, plugins, and themes up to date to

minimise security risks (Releases – WordPress News, 2025). Additionally, installing

appropriate security plugins, implementing strong password policies, and regularly backing up

website data are standard measures to protect WordPress website security.

2.8 Existing Solutions for WordPress Monitoring

Popular WordPress monitoring plugins like Wordfence and Jetpack focus mainly on security,

uptime monitoring, and backup management. While these tools offer essential protective

functions, they lack built-in support for comprehensive logging and log analysis (Jetpack Vs

Wordfence, 2021). As Murphy (2021) identified, finding a free-tier WordPress plugin that

effectively detects plugin vulnerabilities is impossible. Moreover, these solutions typically

offer limited customisation and do not allow developers or administrators to define what log

data should be collected, how it should be processed, or how alerts should be generated. This

lack of flexibility and visibility makes them unsuitable for scenarios that require in-depth

monitoring, especially across distributed WordPress environments.

28

2.9 Gaps in the Current Research

While the effectiveness of the ELK stack in general system monitoring has been well-

documented, limited research specifically applies ELK to the context of distributed WordPress

site management. Few studies address how ELK can streamline security vulnerability detection,

resource usage monitoring, and user behaviour analysis based on application logs in the

WordPress environment. This gap highlights the need for targeted research exploring the

integration of ELK into WordPress maintenance workflows.

2.10 Summary

The existing literature establishes the importance of centralised log management and the

capabilities of the ELK stack in enhancing system monitoring and security. However, specific

applications of ELK in the management of distributed WordPress websites remain

underexplored. This research aims to fill this gap by investigating how ELK can effectively

support developers and administrators in maintaining multiple WordPress installations more

efficiently and securely.

CHAPTER 3 METHODOLOGY

3.1 Introduction

The research follows Design Science Research (DSR) principles to develop and assess a

centralised logging system for distributed WordPress environments which uses ELK Stack

(Elasticsearch, Logstash, Kibana). The research follows DSR because it focuses on improving

practical artefacts through design iterations to resolve real-world problems, such as effective

log management across multiple WordPress sites.

WordPress's content management system is one of the most popular tools globally, with

millions of websites under its management. The complexity of environment monitoring and

maintenance grows significantly when deployments increase in scale, whether they involve

29

multiple servers or websites. System administrators face difficulties when working with

scattered log data because it makes performance metric tracking, security issue detection, and

user behaviour analysis inefficient and delayed. This research develops a central logging

solution powered by the ELK Stack to solve these problems. The platform offers advanced

capabilities for log aggregation and analysis, as well as visualisation that provides a scalable

solution over basic shell-based log management approaches. The system works to increase

transparency and operational efficiency while enabling data-driven choices by linking ELK to

distributed WordPress systems.

The research demonstrates the artefact design, followed by implementation details and

performance evaluation through experimental approaches. It evaluates ELK-based solution

performance against traditional shell scripting methods to explain the benefits of usability and

flexibility, along with actionable insights. The research aims to establish a framework that

developers and administrators can use to manage distributed WordPress systems more

effectively.

3.2 Design Science Research Overview

The research implements Hevner et al.'s (2004) Design Science Research (DSR) framework

through its six essential activities, starting with problem identification, followed by solution

objectives definition, and then design and development stages, demonstration, evaluation, and

communication. The systematic development and evaluation of IT artifacts for real-world

problem solutions follows the stages outlined in this framework. The following sections of this

report correspond to each activity, starting with problem identification in Section 3.3.

3.3 Problem Identification Stage

A systematic literature review was performed to determine research gaps, which led to defining

a specific problem statement. The focus was on the ELK (Elasticsearch, Logstash, Kibana)

stack, distributed logging systems, and performance monitoring in WordPress environments.

30

The review covered the period from 2018 to 2024, using academic databases such as Google

Scholar, IEEE Xplore, and ACM Digital Library. Search terms included combinations like

“ELK stack,” “Elasticsearch logging,” “WordPress performance monitoring,” “centralised

logging,” and “distributed logging system,” enhanced with Boolean operators to improve

relevance.

Inclusion criteria prioritised peer-reviewed journal articles and conference papers in English

that explored ELK implementations in web applications or CMS platforms like WordPress.

Studies unrelated to distributed systems or outdated models were excluded.

The findings revealed that while the ELK stack is widely applied in enterprise-level logging

systems, few studies address its application in distributed WordPress deployments, especially

regarding illegal request detection, resource usage imbalance, and user behaviour analysis

across multiple WordPress instances.

This literature gap highlights the need for a focused investigation into how the ELK stack can

support real-time, centralised monitoring of multiple WordPress sites, forming the basis of the

current study.

3.4 Solution Objectives Stage

The solution objectives stage defined the conditions required to address the research questions

regarding the capabilities of the ELK (Elasticsearch, Logstash, Kibana) stack in managing

distributed WordPress environments. These objectives were directly aligned with the core

research aim: to explore how ELK can improve detection, visibility, and insight generation

compared to traditional manual methods.

The primary objective was to design and develop a centralised logging solution based on the

ELK stack to enhance the detection of security threats across multiple WordPress sites. This

required system administrators to establish automated log collection procedures for distributed

WordPress websites while setting up rule-based mechanism.

31

The project's second goal involved improving system resource monitoring capabilities through

ELK pipeline integration of CPU information and memory metrics and disk I/O and database

performance logs. The system enables real-time and historical analysis of site data which helps

administrators perform performance tuning and capacity planning.

Another goal of this project involved using log information to evaluate WordPress website user

activity through observations of login events and page visits as well as feature utilisation. The

system aimed to convert raw log data into useful information through Kibana visual dashboards

and queries to support site administrators in their data-based choices.

The objectives can be accomplished through developing an ELK system that links multiple

WordPress sites for demonstrating log data collection and processing with visualisation

capabilities for security, system performance and behavioural analysis. The evaluation will

include simulated conditions to measure ELK performance in comparison to traditional manual

monitoring approaches.

This artefact exists as a practical tool for WordPress system administrators while also acting

as academic research regarding centralized logging and CMS performance monitoring systems.

3.5 Design and Development Stage

The ELK-based logging system with multiple WordPress sites integration occurs during the

Design and Development phase. The artefact showcases ELK's ability to automate log

collection while simultaneously enhancing threat detection and providing better resource

visibility and supporting user behaviour analysis. This stage defines the architectural

framework together with technology selection and deployment procedures to build a

operational distributed WordPress prototype. System administrators require scalable designs

with real-time capabilities and user-friendly interfaces.

32

3.5.1 Architecture Overview

The system applies Docker’s containerisation technology to build WordPress websites and

ELK (Elasticsearch, Logstash, Kibana) logging framework.

The system consists of the following key components (see Figure 11):

• A nginx reverse proxy simulates a load balancer or gateway in real deployments.

• Two independent WordPress containers (WordPress1 and WordPress2), each paired

with a dedicated MySQL instance (MySQL1 and MySQL2).

• Filebeat agents (Filebeat1 and Filebeat2) are configured per site to forward application-

level logs (e.g., user activity and MySQL slow query logs) to Logstash.

• Metricbeat agents (Metricbeat1 and Metricbeat2) are deployed alongside each

WordPress container to monitor container-level metrics such as CPU usage, memory

consumption, and disk I/O.

• A central Logstash container, responsible for parsing and enriching log data before

indexing it into Elasticsearch.

• A single-node Elasticsearch service that stores logs and metrics data, enabling full-text

search and aggregations.

• A Kibana dashboard interface visualises system behaviour, analyses performance

trends, and monitors potential security threats.

33

Figure 11: System Architecture

All components are orchestrated using Docker Compose and connected via a custom bridge

network (wp_network) to facilitate inter-service communication. Log and configuration files

are managed via mounted volumes, ensuring observability and traceability of the system’s

inner workings. Its modular, scalable design enables easy replication of additional WordPress

sites and Beats agents, making it suitable for testing centralised logging scenarios in multi-site

WordPress deployments.

3.5.2 Artefact Configuration Overview

This configuration file orchestrates multiple services, including two independent WordPress

sites, their respective MySQL databases, Nginx reverse proxy, and various Elastic Stack

components such as Filebeat, Metricbeat, Logstash, Elasticsearch, and Kibana. The system

operates within a Docker bridge network to enable seamless inter-service communication.

34

3.5.2.1 WordPress and MySQL Services

The artefact simulates a distributed WordPress environment by deploying two separate

WordPress instances, WordPress1 and WordPress2, each connected to a dedicated MySQL

database container (MySQL1 and MySQL2). This design reflects a realistic multi-site scenario,

allowing independent operation, logging, and monitoring for each WordPress instance (see

Figure 12). In the configuration of WordPress 1, a custom volume is mounted at wp-

content/plugins/custom-logs/user-activity.log, which allows a plugin to record user activity

logs persistently. This log file later serves as input for Filebeat to forward to the ELK stack

(see Figure 13). Meanwhile, MySQL1 is configured with the “slow-query-log” flag and “long-

query-time=1” setting, enabling the capture of any SQL queries that exceed one second. These

slow query logs are written to “/var/log/mysql/slow.log”, which is also mounted as a Docker

volume for persistent access (see Figure 14). The second WordPress instance, WordPress2,

follows a similar structure without custom logging. The database container, MySQL2,

maintains the standard configuration and stores data through a dedicated volume (see Figure

15).

Figure 12: WordPress1 Service in Docker Compose

35

Figure 13: WordPress2 Service in Docker Compose

Figure 14: MySQL 1 Service in Docker Compose

Figure 15: MySQL2 Service in Docker Compose

Together, these components form the foundational layer of the artefact's monitoring system,

enabling later log collection and performance analysis.

3.5.2.2 Reverse Proxy with Nginx

A reverse proxy is configured using Nginx to enable unified access to all services (see Figure

16). The Nginx proxy container listens on port 80 and uses a mounted “nginx.conf” file to route

requests based on domain names.

36

As shown in Figure 17, the configuration defines upstream servers for WordPress1,

WordPress2, and Kibana. Requests to wordpress1.arp.com, wordpress2.arp.com, and

elk.arp.com are forwarded to their respective containers. This reverse proxy mechanism plays

a vital role in the artefact by mimicking a real-world infrastructure and allowing seamless

monitoring of distributed WordPress instances and the centralised ELK interface.

Figure 16: Nginx Service in Docker Compose

37

Figure 17: Nginx Configuration

3.5.2.3 Log Collection: Filebeat

Three Filebeat containers were deployed to collect and ship logs from the WordPress

environment to Logstash. Filebeat1 is configured to collect both user activity logs from

WordPress 1 (user-activity.log) and slow query logs from MySQL 1 (/var/log/mysql/slow.log)

(see Figure 18). The Filebeat2 instance is set up for WordPress 2 and reads configuration from

a separate Filebeat2.yml file, ensuring independence in log parsing (see Figure 19). Finally,

filebeat-kibana, shown in Figure 20, collects Docker-related logs for the Kibana interface,

enabling monitoring of access and error events.

38

Figure 18: Filebeat1 Service in Docker Compose

Figure 19: Filebeat2 Service in Docker Compose

Figure 20: Filebeat-kibana Service in Docker Compose

Each Filebeat instance uses a dedicated configuration file (e.g., filebeat1.yml) and is connected

to the shared wp_network, allowing communication with WordPress, Elasticsearch, and

Logstash services.

39

3.5.2.4 Resource Monitoring: Metricbeat

Two Metricbeat instances (Metricbeat1 and Metricbeat2) are deployed for each WordPress

environment to monitor system-level metrics such as CPU, memory, and I/O usage (see Figure

21). These services also rely on mounted configuration files and forward metrics to the ELK

stack. This enables real-time performance tracking of individual WordPress containers,

allowing for performance benchmarking and resource usage analysis.

Figure 21: Metricbeat Services in Docker Compose

3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash, Kibana

To enable centralised log aggregation and analysis, this project integrates the ELK stack,

composed of Elasticsearch, Logstash, and Kibana (see Figure 22). Elasticsearch is the core data

store, indexing incoming logs from multiple WordPress and MySQL sources. Logstash acts as

the data processing pipeline, receiving logs from Filebeat, parsing and filtering them using

custom grok patterns and conditionals, and then forwarding structured data to Elasticsearch.

Kibana provides a web-based interface for visualising and analysing the aggregated log data.

By accessing elk.arp.com, users can search logs, build dashboards, and detect anomalies or

40

performance issues across WordPress instances in real-time. The reverse proxy configuration

(see previous section) ensures convenient access via friendly domain names.

Figure 22: Elasticsearch Service in Docker Compose

3.5.3 Log Collection Pipeline

3.5.3.1 Filebeat Configuration

Filebeat is deployed alongside each key component (WordPress 1, WordPress 2, and Kibana)

as a lightweight log shipper. Each Filebeat instance is configured with specific inputs to collect

relevant log files and forward them to Logstash for processing.

For WordPress 1 (see Figure 23), the filebeat.yml file includes three types of inputs:

• Container logs: It monitors Docker container logs under “/var/lib/docker/containers”

and filters lines containing the domain wordpress1.arp.com, tagging them with the

custom field “log_source: apache1”.

41

• User activity logs: A local file “/var/log/user-activity.log” is monitored and labelled

with “log_source: user-activity”, enabling later distinction in Logstash and

Elasticsearch.

• MySQL slow query logs: Filebeat captures logs from “/var/log/mysql/slow.log”,

applying a multiline pattern to combine multi-line entries beginning with a numeric

date. This input is tagged as “log_source: mysql1-slow-query”.

For WordPress 2 (see Figure 24), a similar configuration captures container logs filtered by the

keyword wordpress2.arp.com and tags them with “log_source: apache2”. For Kibana, Filebeat

uses Docker metadata enrichment and a conditional “drop_event” processor only to retain logs

from the Kibana container (arp-kibana-1). The logs are tagged as “log_source: kibana-stdout”.

All Filebeat instances are configured to send output to the centralised Logstash service via port

5044, enabling further filtering and transformation.

Figure 23: Filebeat 1 Configuration

42

Figure 24: Filebeat 2 Configuration

3.5.3.2 Logstash Configuration

Logstash is configured to serve as the central processing unit in the logging pipeline. It listens

to incoming logs from Filebeat via the Beats input plugin on port 5044. Once logs are received,

Logstash uses conditional filters to parse and enrich the data based on its source, ensuring each

log type is properly structured before indexing into Elasticsearch.

In the filter stage, Logstash distinguishes logs based on the “log_source” field set earlier by

Filebeat:

• For Apache1 and Apache2 logs (from WordPress containers), the

standard %{COMBINEDAPACHELOG} pattern is applied using the Grok plugin to

extract common fields such as IP address, timestamp, HTTP method, URL, and status

code.

• For user-activity logs, a custom Grok pattern is defined to parse structured fields like

“msg”, “timestamp”, “level_name”, “user_ip”, “request_id”, and “duration”.

• For mysql1-slow-query, no parsing is required; instead, a new field alert with value

“slow_query_alert” is added to mark the event as potentially problematic.

• Additionally, if the message field matches a pattern containing “AlertName”, such as

those from Kibana alerts, it is parsed to extract “alert_name” and “log_message”. An

alert field with value “kibana_alert” is then appended.

In the output stage, logs are indexed into Elasticsearch with a dynamic index name pattern:

43

wordpress-[log_source]-logs-[date].

This approach organises logs by their source and date, making them easy to retrieve and analyse

in Kibana. Furthermore, Logstash includes an email alert mechanism:

• If a log entry is marked as “slow_query_alert”, an email is sent to the administrator

with details about the slow query.

• Similarly, “kibana_alert” entries trigger an alert email containing the alert message

details.

This setup allows the system to centralise and structure log data and actively notify

administrators when critical issues arise.

44

Figure 25: Logstash Configuration

3.5.4 Custom Logging Extensions

3.5.4.1 Custom Plugin: Slow Query Simulator

I developed a lightweight WordPress plugin called Slow Query Simulator to simulate

performance bottlenecks and evaluate logging and monitoring capabilities. It executes an SQL

query using SELECT SLEEP(5), forcing a 5-second delay at the database level. The plugin

records the start and end time using microtime(true) and outputs the total execution duration.

This allows for the controlled generation of slow queries, which can be detected and logged by

45

monitoring tools such as Filebeat and Logstash. This is beneficial for verifying whether the

ELK stack can accurately capture and visualise database performance anomalies.

Figure 26:Slow Query Simulator Plugin

3.5.4.2 Custom Plugin: User Activity Logger

To monitor front-end user behaviours on the WordPress site, I developed a User Activity

Logger plugin. This plugin leverages the “Monolog” library to record structured logs in a

custom format compatible with the Logstash GROK filter.

These user behaviours include scrolling past 50% of the height, page stay duration time, button

click times, and accordion toggles. Each action is logged with key metadata such as timestamp,

user IP, request ID, and interaction duration time. Logs are written to user-activity.log. These

logs are later shipped via Filebeat and parsed by Logstash for further analysis in Kibana.

46

Figure 27: User Activity Log Plugin

3.5.5 Kibana Configuration

3.5.5.1 Index Creation in Kibana

To facilitate structured querying and visualisation in Kibana, I created a series of index patterns

under Stack Management. These include: “metricbeat-wordpress1*”, “metricbeat-

wordpress2*”, “metricbeat-apache1*”, “metricbeat-apache2*”, “wordpress-mysql1*”, and

“wordpress-user-activity-logs*”. Each pattern corresponds to logs collected from specific

components across different virtual machines. For example, the “metricbeat-*” indices are used

for system and service metrics, while “wordpress-user-activity-logs*” stores custom logs from

the WordPress plugin. Defining these patterns enables efficient filtering, dashboard creation,

47

and time-based analysis, which are essential for performance comparison and anomaly

detection.

Figure 28: Index Patterns Created in Kibana

3.5.5.2 Alerts Rule Configuration

In Kibana, I configured an alert rule to record when a certain threshold of POST requests was

exceeded. As illustrated in Figure 29, the configuration of a Kibana alert involves four key

steps. First, the execution interval is defined to determine how frequently the rule is evaluated

(e.g., every minute). Second, the specific resource being monitored is selected, in this case,

the “wp-login.php” file, which is often targeted in brute-force attacks. Third, the trigger

48

condition is configured, specifying that the alert should be activated if the number of requests

to this endpoint exceeds five times per minute. Finally, a message template is composed to

present the message content (see Figure 30).

Figure 29: Alert Rule Created in Kibana

49

Figure 30: Alert Rule Configuration

3.5.5.3 Dashboard Creation in Kibana

To analyse user interactions on the WordPress site, I created a custom dashboard in Kibana

using “wordpress-user-activity-logs*” as the source index (see Figure 31). One key metric

displayed on the dashboard is the number of unique visitors, which is approximated by counting

the number of distinct “request_id” values. Each “request_id” serves as a session identifier

generated per user visit, enabling estimation of session-based traffic (see Figure 32).

50

Figure 31: Count of Visitors Created in Dashboard

Figure 32: Count of Visitors Configuration in Dashboard

To gain deeper insights into user engagement, I utilised a vertical bar chart to visualise visitor

stay time (see Figure 33). In this chart, the X-axis represents the unique count of “request_id”,

which corresponds to individual user sessions (see Figure 35), while the Y-axis shows the sum

of the duration field, which records the total time each visitor spent on the page (see Figure 34).

51

Figure 33: User Duration Time Created in Dashboard

Figure 34: User Duration Time Vertical Axis Configuration in Dashboard

52

Figure 35: User Duration Time Horizontal Axis Configuration in Dashboard

To analyse how many users were actively engaging with the content, I applied a filter on the

field “msg.keyword” with the value: “User scroll down to the 50% position” (see Figure 36).

This ensures we only analyse logs that record scroll behaviour. Then, I calculated the unique

count of “request_id”, which represents individual sessions or visitors (see Figure 37).

Figure 36: Count of Users Scroll Down 50% Created in Dashboard

53

Figure 37: Count of Users Scroll Down 50% Configuration in Dashboard

To measure user interaction through clicks, I applied a filter on the field “msg.keyword” with

the value “User triggered click event”. Then I set the horizontal axis to display “request_id”

(representing individual visitors, see Figure 38), and the vertical axis to count the number of

logs matching each session (see Figure 39). This allowed me to visualise how many times each

visitor clicked during their session.

Figure 38: Users Triggered Click Event Times Created in Dashboard

54

Figure 39: Users Triggered Click Event Times Configuration in Dashboard

3.5.6 Brute-Force Detection Script for WordPress Login Attempts

A simple shell script was implemented to monitor potential brute-force attacks targeting the

WordPress login endpoint. This script analyses the Docker container logs to identify IP

addresses that have made excessive login attempts to “/wp-login.php”. Specifically, it extracts

all POST requests to this endpoint, counts the number of occurrences per IP address, and

outputs any IP with more than five attempts (see Figure 40). This lightweight detection can be

extended to automatically block malicious IPs using firewall rules or intrusion prevention

systems.

55

Figure 40: Shell Script to Calculate Brute-Force Times

3.5.7 User Behaviour Log Analysis Script

To verify the accuracy of the dashboard data, I wrote a Bash script that analyses raw logs from

user-activity.log (see Figure 41). The script filters logs from the past hour, extracts key fields

such as “request_id”, “msg”, and “duration”, and summarises user actions per session. It counts

click events, scroll events (specifically "scroll down to 50%"), and accumulates total stay

duration for each visitor.

56

Figure 41: Shell Script to Analysis User Behaviours

3.6 Evaluation Stage

This evaluation aims to assess the effectiveness and reliability of the proposed logging and

monitoring system across three functional components: brute-force attack detection and

alerting, system performance and slow query monitoring, and user behaviour analysis. Each

component was tested through practical scenarios to verify data collection, visualisation, and

system responsiveness.

57

3.6.1 Brute-Force Attack Detection and Alerting

To evaluate the system's ability to detect brute-force login attempts, simulated attacks were

conducted by repeatedly sending POST requests to “/wp-login.php” using automated tools. The

ELK stack successfully captured these attempts through logs collected by Filebeat. A custom

Bash script was used to aggregate IP addresses with excessive failed attempts.

Elast-alert was configured to trigger an email alert if an IP exceeded five login attempts within

a short timeframe. The delay from attack detection to email delivery was roughly estimated at

10 - 20 seconds, demonstrating that the alerting mechanism is timely and practical for intrusion

detection in real-world use cases.

3.6.2 System Performance and Slow Query Monitoring

The system monitoring process utilised Metricbeat to track CPU and memory usage metrics

for Apache, MySQL and WordPress services. The system forwarded data to Elasticsearch

before Kibana dashboards displayed the information.

A simulated SQL query with intentional delay (SELECT SLEEP(5)) was executed to generate

a slow query log for slow query analysis. Filebeat processed the logs before Kibana displayed

them in its visual interface. The dashboard displayed query results within less than thirty

seconds from query execution to prove its capability to identify performance bottlenecks

through real-time detection.

3.6.3 User Behaviour Analysis

The system collected user behaviour data through structured logs that contained user ID

information along with timestamps, event types (clicks, scrolls, page stays) and duration

measurements. A Bash script was written specifically for this project to calculate user ID-based

metrics, including click counts, scroll events, and total user duration.

The results were compared with visualisations created in Kibana using filters and aggregations.

Metrics like the number of users who scrolled past 50% of the page and the frequency of clicks

58

events were consistent between the script output and the Kibana dashboards. This validated the

system’s ability to interpret and visualise user interaction patterns accurately.

3.6.4 Summary

Across all three modules, the evaluation confirmed that the ELK-based logging system can:

• Detect and alert on brute-force login attempts in near real-time.

• Monitor system resource usage and effectively identify slow database queries.

• Analyse and visualise user behaviour patterns for performance and UX insights.

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Introduction to Experimental Setup

This experiment was designed to explore how the ELK stack improves log analysis, monitoring,

and user insight in distributed WordPress environments. All services, including two separate

WordPress sites, their MySQL databases, and the ELK stack, were deployed using Docker

containers to simulate a realistic, scalable setup. For security threat detection, I simulated brute-

force login attempts, I also integrated email alerts for suspicious requests. To monitor system

resources, Metricbeat was used to track CPU and memory usage across WordPress containers,

MySQL slow queries were enabled and forwarded to ELK using Filebeat. For user behaviour

analysis, a custom plugin was created to log user actions, these logs were sent to ELK to help

analyse interaction patterns.

59

4.1.1 Experimentation on Security Monitoring

The experiment successfully demonstrated the ELK stack's capability to detect and respond to

suspicious login behaviour on a WordPress site. A simulated brute-force attack generated six

consecutive “/wp-login.php” post requests from the same IP address. These events were

captured in the raw Docker logs (see Figure 42) and processed using a custom shell script,

which accurately identified the excessive login attempts (see Figure 43). The same events were

visualised in Kibana, confirming that the logs were correctly ingested and parsed (see Figure

44). The Watcher rule was triggered upon detecting the threshold breach (see Figure 45), and

an alert email was sent automatically (see Figure 46). This verified that the security monitoring

pipeline, from log collection to alert delivery, was functioning correctly and in real time.

Figure 42: User Login Records in Apache Log

Figure 43: Result of User Login Times by Shell Script

60

Figure 44: User Login Logs Appeared in Kibana

Figure 45: Alert Message Stored in Kibana Log

Figure 46: Alert Email Received from Kibana Log

4.1.1.1 Discussion

This experiment demonstrated the effectiveness of ELK Stack in real-time security monitoring

for WordPress login activity. The system successfully identified repeated suspicious login

attempts from a single IP address by simulating a brute-force attack. The seamless flow, from

Docker log collection and shell-based preprocessing to Kibana visualisation and Watcher-

triggered alerts, validated the reliability and responsiveness of the ELK pipeline. The timely

61

email alert confirmed that potential threats can be detected and reported automatically,

highlighting ELK’s practical value in enhancing WordPress site security.

4.1.2 Experimentation on Performance Monitoring

This experiment verified that Metricbeat, integrated with the ELK Stack, can effectively

monitor system performance for distributed WordPress containers. As shown in Figure 47,

the “docker ps” command identified two running Metric containers. Their corresponding

dashboards, shown in Figure 48, Figure 49 and Figure 50, display real-time metrics such as

CPU, memory, load, and network traffic. To validate accuracy, “htop” was run inside each

WordPress container. The results (Figure 53 and Figure 54) showed CPU and memory values

consistent with those in the dashboards. Metricbeat logs in Elasticsearch (Figure 52 and

Figure 53) further confirmed successful data collection and transmission. These results

demonstrate that Metricbeat reliably captures and visualises system metrics across multiple

WordPress instances.

Figure 47: Metricbeat Containers Running Status

Figure 48: Metrics Collected By Metricbeats in Dashboard

62

Figure 49: Metrics Collected by Metricbeat 1

Figure 50: Metrics Collected by Metricbeat 2

63

Figure 51: Logs Collected by Metricbeat 1 Shown in Kibana

Figure 52: Logs Collected by Metricbeat 2 Shown in Kibana

Figure 53: Metrics Shown on WordPress 1 Server by HTOP

64

Figure 54: Metrics Shown on WordPress 2 Server by HTOP

4.1.2.1 MySQL Slow Query monitoring

Figure 55 displays a captured slow SQL query that took 5 seconds to execute, exceeding the

predefined threshold. The slow query log was successfully recorded (see Figure 56) and parsed

by Logstash. The structured output was visualised in Kibana, as shown in Figure 57, confirming

proper data ingestion and processing. Consequently, an alert email was automatically triggered,

as illustrated in Figure 58, demonstrating the effectiveness of the monitoring and alerting setup.

Figure 55: Slow SQL Query Result

65

Figure 56: Slow SQL Query Raw Logs

Figure 57: Slow SQL Query Logs Shown in Kibana

Figure 58: Alert Message of Slow SQL Query Via Email Notification

4.1.2.2 Discussion

The experiments confirmed the effectiveness of using Metricbeats and the ELK Stack for real-

time monitoring and alerting in a distributed WordPress environment. Metricbeats successfully

captured system-level metrics from multiple containers, such as CPU, memory usage, load,

and network traffic, with data accuracy validated against the native “htop” tool. This

66

demonstrates the reliability of Metricbeat in providing consistent and actionable system

performance insights.

Additionally, the slow query monitoring setup proved effective in detecting performance issues.

The ELK Stack accurately ingested and visualised slow SQL queries, and the alerting

mechanism functioned as expected by notifying administrators when predefined thresholds

were exceeded. Together, these results showcase ELK’s robust capabilities for both

performance tracking and proactive issue detection in a containerised web environment.

4.1.3 Experimentation on Decision-Making Support Using Custom User Activity Logs

To evaluate user behaviour in this experiment, a typical e-commerce website was built using

the Kadence theme in WordPress (see Figure 59). Four simulated users performed various

browsing actions. Figure 60 displays the original log entries captured during these sessions.

Figure 61 shows the Kibana dashboard visualising key metrics: the number of users who visited

the homepage, clicked promotional buttons, the average time spent on the homepage, and how

many users scrolled to the bottom of the page. These metrics were further verified through a

custom shell script, and the results matched the visualised data (see Figure 62). Additionally,

Figure 63 shows ELK logs confirming the successful ingestion and recording of all user

activities.

67

Figure 59: An E-Commerce Store Built on Kadence Theme

Figure 60: User Behaviour Raw Logs

68

Figure 61: User Behaviour Stats Shown in Dashboard

Figure 62: User Behaviour Stats Calculated By Shell Script

Figure 63: User Behaviour Logs Shown in Kibana

4.1.3.1 Discussion

The user behaviour monitoring experiment demonstrated the effectiveness of ELK Stack in

tracking and analysing frontend interactions on a WordPress-based e-commerce site. Key

69

metrics such as homepage visits, promotional button clicks, time spent on the homepage, and

scroll depth were successfully captured by simulating different user sessions. The data

visualised in Kibana aligned with the raw logs and manual verification using shell scripts,

confirming the reliability of the logging setup. These findings prove how users interact with

the system and demonstrate how ELK can help optimise UX and drive data-based marketing

decisions.

4.2 Summary

This chapter analysed the ELK Stack's functionality through security alerting, system

performance monitoring, and user behaviour analytics in distributed WordPress environments.

Security monitoring was validated through a simulated brute-force login attempt, where

suspicious behaviour was detected, visualised, and alerted in real time. Metricbeat proved

effective in capturing and visualising real-time performance metrics such as CPU, memory,

and network usage across multiple WordPress containers. Finally, custom dashboards and log

analysis enabled detailed tracking of user interactions, including visit counts, button clicks,

scroll depth, and session duration. These results demonstrate that the ELK Stack offers a

comprehensive and reliable solution for threat detection, operational visibility, and user

behaviour analysis in dynamic web applications.

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research demonstrated that the ELK Stack can effectively monitor and manage distributed

WordPress websites. By implementing a centralised logging and visualisation system, the

study addressed key challenges in security alerting, system performance monitoring, and user

behaviour tracking. The experiments showed that Metricbeat reliably captured system-level

70

metrics across multiple WordPress containers, slow SQL queries were effectively ingested and

alerted on, and user behaviour data could be analysed in real time through visual dashboards.

These findings highlight the ELK Stack’s strong capability to support developers and

administrators in improving the security, performance and maintainability of modern

WordPress-based applications.

5.2 Recommendations and Future Work

Future work could expand on this study by exploring the use of other Beats modules (e.g.,

Auditbeat) for more comprehensive system monitoring. In addition, integrating machine

learning capabilities within the ELK Stack (via Elastic ML) could help automatically detect

anomalies in traffic patterns or unusual user behaviour. More complex user interaction

scenarios and higher concurrency loads could also be tested to evaluate ELK’s scalability.

Another valuable direction would be implementing role-based access control within Kibana

for better multi-user data governance.

5.3 Limitations

While the study demonstrated the core functionality of ELK in a controlled environment, it was

limited to a small number of WordPress instances and simulated user scenarios. The testing

environment lacked high traffic or real-world data variety, which could affect the

generalizability of results. Additionally, alert thresholds were manually defined, which may

not scale well in dynamic production environments. Lastly, the security analysis focused on

login attempts, but did not cover deeper intrusion detection or cross-site scripting (XSS) threats.

71

REFERENCES

Achar, S. (2021). An Overview of Environmental Scalability and Security in Hybrid Cloud

Infrastructure Designs. Asia Pacific Journal of Energy and Environment, 8(2), Article

2. https://doi.org/10.18034/apjee.v8i2.650

Ahmed, F., Jahangir, U., Rahim, H., Ali, K., & Agha, D.-S. (2020). Centralized Log

Management Using Elasticsearch, Logstash and Kibana. 2020 International

Conference on Information Science and Communication Technology (ICISCT), 1–7.

https://doi.org/10.1109/ICISCT49550.2020.9080053

Elastic Stack. (2025). What is Elasticsearch? | Elasticsearch Guide [8.17] | Elastic

[Learn/Docs/Elasticsearch/Reference/8.17]. What Is Elasticsearch? | Elasticsearch

Guide [8.17] | Elastic.

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro-

what-is-es.html

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1), 75–105.

He, S., Zhang, X., He, P., Xu, Y., Li, L., Kang, Y., Ma, M., Wei, Y., Dang, Y., Rajmohan, S.,

& Lin, Q. (2022). An empirical study of log analysis at Microsoft. Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 1465–1476.

https://doi.org/10.1145/3540250.3558963

Jetpack Vs Wordfence: Which Is Better Security Plugin? (2021, December 28).

https://www.malcare.com/blog/jetpack-vs-wordfence/

72

Logstash Introduction | Logstash Reference [8.17] | Elastic. (2025).

[Learn/Docs/Logstash/Reference/8.17].

https://www.elastic.co/guide/en/logstash/8.17/introduction.html

Murphy, D. T., Zibran, M. F., & Eishita, F. Z. (2021). Plugins to Detect Vulnerable Plugins:

An Empirical Assessment of the Security Scanner Plugins for WordPress. 2021

IEEE/ACIS 19th International Conference on Software Engineering Research,

Management and Applications (SERA), 39–44.

https://doi.org/10.1109/SERA51205.2021.9509274

Releases – WordPress News. (2025, March 25). https://wordpress.org/news/category/releases/

Shah, P. G., & Ayoade, J. (2023). An Empricial Study of Brute Force Attack on Wordpress

Website. 2023 5th International Conference on Smart Systems and Inventive

Technology (ICSSIT), 659–662. https://doi.org/10.1109/ICSSIT55814.2023.10060966

Sunil, S., Suresh, A., & Hemamalini, V. (2023). Log Based Anomaly Detection: Relation

Between The Logs. 2023 International Conference on Networking and

Communications (ICNWC), 1–5.

https://doi.org/10.1109/ICNWC57852.2023.10127571

Svacina, J., Raffety, J., Woodahl, C., Stone, B., Cerny, T., Bures, M., Shin, D., Frajtak, K., &

Tisnovsky, P. (2020). On Vulnerability and Security Log analysis: A Systematic

Literature Review on Recent Trends. Proceedings of the International Conference on

Research in Adaptive and Convergent Systems, 175–180.

https://doi.org/10.1145/3400286.3418261

toddplex. (2016, August 2). Your business doesn’t need WordPress. Unconventional Website

Advice. https://medium.com/unconventional-website-advice/your-business-doesn-t-

need-wordpress-464c69da34a2

73

Wang, Y. (2023). Design of Visual Log Analysis System. 2023 IEEE International Conference

on Sensors, Electronics and Computer Engineering (ICSECE), 1649–1652.

https://doi.org/10.1109/ICSECE58870.2023.10263397

Xu, S., Meng, Z., & Wang, H. (n.d.). Research and Implementation of Log-Based Anomaly

Detection Platform Based on ELK+Kafka.

Yang, L., Chen, Z., Bai, Y., Zhang, M., & Yu, J. (2022). Research on Data Processing and

Visualization of Simulation System. Proceedings of the 5th International Conference

on Big Data Technologies, 131–134. https://doi.org/10.1145/3565291.3565312

Yi, K. M., Kyaw, L. Y., & Thandar, P. (2024). Enhancing Security of WordPress Websites

built on Virtual Machine Using Cloud Computing Technology. 2024 5th International

Conference on Advanced Information Technologies (ICAIT), 1–6.

https://doi.org/10.1109/ICAIT65209.2024.10754914

Zhu, J., He, S., He, P., Liu, J., & Lyu, M. R. (2023). Loghub: A Large Collection of System

Log Datasets for AI-driven Log Analytics. 2023 IEEE 34th International Symposium

on Software Reliability Engineering (ISSRE), 355–366.

https://doi.org/10.1109/ISSRE59848.2023.00071

74

APPENDICES

This paper's source code and resources are publicly available at the following GitHub

repository: https://github.com/jigangmissyou/arp.git.

	Abstract
	Acknowledgements
	Table Of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	CHAPTER 1 INTRODUCTION
	1.1 General Background
	1.2 Significance of the Study
	1.3 Scope of Study
	1.4 Research Problem
	1.5 Research Questions
	1.6 Research Objectives
	1.7 Thesis Organisation

	CHAPTER 2 LITERATURE REVIEW
	2
	2.1 Importance of Log Data Analysis
	2.2 Centralised Log Management Overview
	2.3 The ELK Stack in Log Management
	2.2.1 Beats Module
	2.2.2 Structured vs. Unstructured Data
	2.2.3 Elasticsearch Module
	2.2.4 Logstash Module
	2.2.5 Kibana Module
	2.2.6 Application of ELK Stack
	2.4 Security Monitoring through Log Analysis
	2.5 Resource Utilisation Monitoring
	2.6 Overview of WordPress
	2.7 WordPress Management Challenges
	2.8 Existing Solutions for WordPress Monitoring
	2.9 Gaps in the Current Research
	2.10 Summary

	CHAPTER 3 methodology
	3
	3.1 Introduction
	3.2 Design Science Research Overview
	3.3 Problem Identification Stage
	3.4 Solution Objectives Stage
	3.5 Design and Development Stage
	3.5.1 Architecture Overview
	3.5.2 Artefact Configuration Overview
	3.5.2.1 WordPress and MySQL Services
	3.5.2.2 Reverse Proxy with Nginx
	3.5.2.3 Log Collection: Filebeat
	3.5.2.4 Resource Monitoring: Metricbeat
	3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash, Kibana

	3.5.3 Log Collection Pipeline
	3.5.3.1 Filebeat Configuration
	3.5.3.2 Logstash Configuration

	3.5.4 Custom Logging Extensions
	3.5.4.1 Custom Plugin: Slow Query Simulator
	3.5.4.2 Custom Plugin: User Activity Logger

	3.5.5 Kibana Configuration
	3.5.5.1 Index Creation in Kibana
	3.5.5.2 Alerts Rule Configuration
	3.5.5.3 Dashboard Creation in Kibana

	3.5.6 Brute-Force Detection Script for WordPress Login Attempts
	3.5.7 User Behaviour Log Analysis Script

	3.6 Evaluation Stage
	3.6.1 Brute-Force Attack Detection and Alerting
	3.6.2 System Performance and Slow Query Monitoring
	3.6.3 User Behaviour Analysis
	3.6.4 Summary

	Chapter 4 EXPERIMENTAL RESULTS AND DISCUSSION
	4
	4.1 Introduction to Experimental Setup
	4.1.1 Experimentation on Security Monitoring
	4.1.1.1 Discussion

	4.1.2 Experimentation on Performance Monitoring
	4.1.2.1 MySQL Slow Query monitoring
	4.1.2.2 Discussion

	4.1.3 Experimentation on Decision-Making Support Using Custom User Activity Logs
	4.1.3.1 Discussion

	4.2 Summary

	chapter 5 CONCLUSION AND FUTURE WORK
	5
	5.1 Conclusion
	5.2 Recommendations and Future Work
	5.3 Limitations

	REFERENCES
	APPENDICES

