| Whitireia X WelTec

N EW Z EAI_AN D Te Whare Wananga o te Awakairangi

Enhancing Centralised Log Management for

Distributed WordPress Sites with ELK Stack

An applied research project presented in partial fulfilment of the requirements

for the degree of

Master of Information Technology

at Whitireia/WelTec, Wellington, New Zealand

Jigang Guo

2025

ABSTRACT

Maintaining distributed WordPress websites across different servers can be a demanding task,
especially for developers or system admins managing them alone. Relying on manual methods
to check for security issues, track how resources are being used, or review log files often
requires a lot of time and leaves room for mistakes. This project investigates using the ELK
stack - Elasticsearch, Logstash, and Kibana - as a centralised solution to simplify these tasks.
The goal is to see if ELK can make it easier to monitor and manage multiple WordPress setups
by offering real-time data and automatic alerts.

The study centres on three main areas: spotting security threats, keeping an eye on server
performance and usage, and interpreting meaningful application logs. I will compare ELK’s
performance to that of traditional, manual logging practices, focusing on efficiency, accuracy,
and system safety. By doing so, I aim to understand whether ELK truly offers practical
improvements. The results should provide helpful suggestions for WordPress users or
administrators who are considering choosing modern monitoring tools to supervise websites.
Ideally, the study will show how ELK used as a centralised log system can ease maintenance
tasks, reduce the workload on administrators, and make WordPress sites more secure and

stable.

11

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Clement Swarnappa, for his
invaluable guidance, support, and encouragement throughout the course of this research. His
insightful feedback and patient instruction have greatly contributed to the development and
completion of this project.

I would also like to thank my lecturers and classmates at Whitireia and WelTec for their
continuous support and inspiration during my studies.

Finally, I am deeply grateful to my family for their unwavering love and encouragement, which

have been a source of strength throughout my academic journey.

111

TABLE OF CONTENTS

ABSTRACT ...ttt ettt sttt et e st e bt e stesbeebeeatesaeenseas il
ACKNOWLEDGEMENTS ...ttt ettt il
LIST OF TABLESottt sttt ettt sttt et s vi
LIST OF FIGURES ..ottt sttt s e s e vii
LIST OF ABBREVIATIONSottt st Xi
CHAPTER 1 INTRODUCTIONooitiiiiiieieeiesitete et eee st seee e ssaesneenneas 1
1.1 General Backgroundcccccoeouiiriieiiieiiieiieeie e 1
1.2 Significance of the Studycoceeiiriiiiiiiiiceee 2
1.3 ScOPe Of StUAY ..eouviiiiieiieeee e e 2
1.4 Research Problemccoiiiiiieiiieeciiececeee e 2
1.5 Research QUESTIONSueviiiiuiiiieeiiiee et e 3
1.6 Research ObJECIVEScc.uivuiriiriiiiiniesieeteetest ettt 3
1.7 Thesis OrganiSation...........cceeeeeeruierieenieerieeireenieesseeseeesseesseesseesseesseessns 4
CHAPTER 2 LITERATURE REVIEWc.coiiiiiiiiiiieieceee e 6
2.1 Importance of Log Data AnalysSis........ccccceerieeiieniieeiiieienieeiee e 6
2.2 Centralised Log Management OVEIVIEWcoceevuereenieeiueneenienueneennens 7
2.3 The ELK Stack in Log Managementcccceevieriienienieeneeseeeneenee. 7
2.2.1 Beats MOdUIC........ccooiiiiiiiecieeeee et e 8
2.2.2 Structured vs. Unstructured Data...........cccceoerieniiiinienieienieeeeeee 10
2.2.3 Elasticsearch Module...........cccoovvieiiiieiiieeciieeeeee e 11
2.2.4 Logstash ModUIEcc.ooviieiiiiieiiieieee et 13
2.2.5 Kibana Modulecc.eeecuiieiiiieciieeciie et 13
2.2.6 Application of ELK Stackcccocveiiiiiiieniiciieiiecieeeece e 14
2.4 Security Monitoring through Log Analysisc.cccceveeiieiieniencniieneenens 15
2.5 Resource Utilisation MONItOTING........cceeriieriierieeniieeieeiieeeeeiee e 15
2.6 Overview Of WOrdPresscoouiiiieiiiiiieiiieieseeeese e 16
2.7 WordPress Management Challengescccceevieriienienciieniecieeeeee, 27
2.8 Existing Solutions for WordPress Monitoring..........c.ceecveeeevveencveeennveennne. 27
2.9 Gaps in the Current Research............occevviieiiiiiiiinieniiciecceeeee e, 28
2. 10 SUIMIMATY ceeiiiiiee ettt ettt e ettt e e ettt e e e et eeeenbbeeeessbaeeesnnnaeeessnseeeas 28
CHAPTER 3 METHODOLOGYvtiiiiiiiiiieniieieeieeitese ettt 28
3.1 INtrOAUCTION ..c.uiiiiiitieieee ettt st 28
3.2 Design Science Research OVErviewcccoccveeviienieeiiieniesiieenieeieeeeens 29
3.3 Problem Identification Stage.........cccccueeevieeriiiieeiieeeiie e 29
3.4 Solution ObJECtiVES STAZEc.eeevvieriieeiieiiieeieeie ettt 30
3.5 Design and Development Stagec.ceeeveeeeiieeeiiieeniiieeeiee e eeiee e 31
3.5.1 Architecture OVEIVIEW.......coueevuiruieriieieniienieeieeee et 32
3.5.2 Artefact Configuration OVervieWccceeeeuveerciieeriieeenieeesvee e 33
3.5.2.1 WordPress and MySQL Servicesccecceevverveenurennnenne 34
3.5.2.2 Reverse Proxy with NgInXcccccceeeviiieiiieniieeeiee e 35
3.5.2.3 Log Collection: Filebeat...........cccceevvirrieriianieniieiieee 37
3.5.2.4 Resource Monitoring: Metricbeat............ccceeeevveerrieennnennns 39
3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash,
Kibanaooiiiiii e 39
3.5.3 Log Collection Pipeline..........cccoeeueeiiieniieiiiniieiiecieeieeeieeee e 40

v

3.5.3.1 Filebeat Configuration............ccceveevverieneeneneeneenieneene. 40

3.5.3.2 Logstash Configurationccceeeeveerieriieneenreesieenenenn 42
3.5.4 Custom Logging EXtenSIONS.........coceevueriineenieriieneenienieneeieneee 44
3.5.4.1 Custom Plugin: Slow Query Simulator............c.ccceeune.ne. 44
3.5.4.2 Custom Plugin: User Activity Logger..........cccceveevuernenne. 45
3.5.5 Kibana Configurationcceccueeevveeriieeniiieeniieesieeeeiee e 46
3.5.5.1 Index Creation in Kibana.............cccceviiiniiinninniiiienee 46
3.5.5.2 Alerts Rule Configurationccceeeveeeiveerciieenieeeniennns 47
3.5.5.3 Dashboard Creation in Kibanacceceevieniiiniennnne 49
3.5.6 Brute-Force Detection Script for WordPress Login

ATCINPLS ..ottt 54
3.5.7 User Behaviour Log Analysis SCript........cccceevvievienciienienieenieenenn. 55
3.6 Evaluation Stageccceeveiiiiiiiiiiieiieieecee et 56
3.6.1 Brute-Force Attack Detection and Alerting...........cccceevveeveenennne.. 57
3.6.2 System Performance and Slow Query Monitoring...........cc..c........ 57
3.6.3 User Behaviour ANalysiS........ccceevveeviierieenienieeiieeie e 57
3.6.4 SUIMIMATYeoiiiiiiiiiieiiceeeee ettt 58
CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION........cccccevviineenee 58
4.1 Introduction to Experimental SEtupcccceveriiniiviniiiniiiiniceeieeece, 58
4.1.1 Experimentation on Security Monitoringccceceervveecveerneennnn. 59
4.1.1.1 DISCUSSION .uutieniiieiiieiieeiiesiieeiee sttt et e et e e e 60
4.1.2 Experimentation on Performance Monitoring...........ccccccecueenueennee. 61
4.1.2.1 MySQL Slow Query monitoring........cc.cceceeveevuereenuennnenee 64
4.1.2.2 DISCUSSION ..cuveeutienieiieiieiiesieeieeieeiee ettt e e 65

4.1.3 Experimentation on Decision-Making Support Using
Custom User ACtivity LOgSccccvveriieriieiieiiieieeieeeece e 66
4.1.3.1 DISCUSSION .uetieniiiiiiieiieeieesiie ettt ettt 68
4.2 SUMMATY c..etvieiiiiieeieeeeiee ettt e et e st ee st e et e e s bt e e sbeeesabeeesabeeesaseesnnneeens 69
CHAPTER 5 CONCLUSION AND FUTURE WORKccccciiiiiieiiieeeieecee 69
5.1 CONCIUSION .ottt ettt 69
5.2 Recommendations and Future Work.............coocooiiiiiiniinne, 70
5.3 LIMIEATIONS .evvitienieriieriieieeteeit ettt ettt ettt et sbe e e ssaesaee e 70
REFERENCES ...ttt ettt ettt st teseee s e enaesneenseas 71

APPENDICES ..o 74

LIST OF TABLES

Table No.

Table 1:Beats library from the Elastic

vi

LIST OF FIGURES

Figure No. Page No.
Figure 1: ELK WOrkflow pipeline........coceiceveiciseicisnicssnncsssnncsssnnsssnnsssssncsssssssssssssanns 8
Figure 2: Comparison between Structured and Unstructured Data..................... 11
Figure 3: How does Elasticsearch wWorks?oeciineeisenssincsneissecssnecseccsnensnnnens 12
Figure 4: WordPress Block Editor.........iiueineicniinennnenniicsniineensnecsssecsaenssnnens 17
Figure 5: Popular WordPress pluginseieicniiisensenssnecsenssencssecsssecssessnens 18
Figure 6: Popular WordPress themes...........cueiiecniinseecsennsnecsennsenssnecsssecssessncens 19
Figure 7: Official website of Taylor SWift..........ccueeneinvensennsienseissnisecsseccsensnnnene 21
Figure 8: Official website of Disney BOOKSccceeveriueisensseecsneisseecsnecssnecsaessnnnens 22
Figure 9: Official website of SOny MUSICccoveevviicsiiiseensensseecseissensseecsseecsnessnnens 23
Figure 10: The official website of Time magazinecceevveeesuerseecsnecsseecsuessnnnene 25
Figure 11 System ArchiteCturecceieviiiveiisenssencseissennsenssnecseisssesssessssscssesssseens 33
Figure 12: WordPress1 Service in Docker Compose..........ccoeeereriseenseecssnecsaensneene 34
Figure 13: WordPress2 Service in Docker Compose..........ccueeererireensecssnecsaensaneene 35
Figure 14: MySQL 1 Service in Docker COmPOSeccueevueerreecsuerssnecseecsnecsansssneens 35
Figure 15:MySQL2 Service in Docker COMPOSEccccueereersrecsuerssnecseecssnecsansssncens 35

vil

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Nginx Service in Docker COMPOSE......ouceveensensnensuenssnecsaenssnessseesnecaees 36

NgIinX Configurationceeeeenneennseensenssnnnsenssnenssecsssesssensssesssessssessaens 37

Filebeatl Service in Docker COmMPOSEccoueereensuenssnecsaenssnessaeesnecaees 38

Filebeat2 Service in Docker COmPOSeccoueereensueessnecsaenssnessaecsnecaens 38

Figure 20: Filebeat-kibana Service in Docker COmpoSeccevuerenenrueessnecsaensaneens 38
Figure 21: Metricbeat Services in Docker COmMPOSEcoueevveeruercnessnecssnecsaensaneens 39
Figure 22: Elasticsearch Service in Docker COmMPpOSEceveeeruersrnenseecssnecsaensaneens 40
Figure 23: Filebeat 1 Configuration.........oeeeeeieecnennsenseessnecsenssnenssecsssecsaesssneens 41
Figure 24: Filebeat 2 Configuration.........oeeieeeneecsennsenseessnecsensssesssecsssesssesssncens 42
Figure 25: Logstash Configurationeeeeeeniecnennnennecnsnecsenssnensecsssecsssssncens 44
Figure 26:Slow Query Simulator Plugin..........eeieeinnnenneensnecsenssncnsecssnecsaessaneens 45
Figure 27: User Activity Log PIUgiN......ccuienuenneensrensennsnensecssnecsaenssnesssncsssecsaesssncens 46
Figure 28: Index Patterns Created in Kibana..........uenneensieenennsnensecssnecsnensneene 47
Figure 29: Alert Rule Created in Kibanaccoeeiieivvnricnsssnnnicsssnnrccsssnnsecssssnsseces 48
Figure 30: Alert Rule Configuration........ccccccveecccsniccscsnercssssnnnecsssnssssssssssssssssssseces 49
Figure 31: Count of Visitors Created in Dashboard..........c.cecevvvuriccsivnrcccscnnneces 50
Figure 32: Count of Visitors Configuration in Dashboard.............cccovvvureciscnnnnece 50

viil

Figure 33:

Figure 34:

Figure 35:

Figure 36:

Figure 37:

Figure 38:

Figure 39:

Figure 40:

Figure 41:

Figure 42:

Figure 43:

Figure 44:

Figure 45:

Figure 46:

Figure 47:

Figure 48:

Figure 49:

User Duration Time Created in Dashboardcccvveenueenneennencnnnne 51
User Duration Time Vertical Axis Configuration in Dashboard........ 51
User Duration Time Horizontal Axis Configuration in Dashboard... 52
Count of Users Scroll Down 50% Created in Dashboard 52
Count of Users Scroll Down 50% Configuration in Dashboard......... 53
Users Triggered Click Event Times Created in Dashboard................ 53
Users Triggered Click Event Times Configuration in Dashboard 54
Shell Script to Calculate Brute-Force Timesccoceeveeisuecsercsnensanenne 55
Shell Script to Analysis User Behaviours........coueeceeeseensnenseessnensnennne 56
User Login Records in Apache Log......cuiieenneeensnecsenssnensaecssnecsaessaneens 59
Result of User Login Times by Shell Script........coeeveeverinenseeesnecnnens 59
User Login Logs Appeared in Kibana..........ceieenennsnensecssnecsnencneens 60
Alert Message Stored in Kibana Log........ceouevneennuecssnensnensnessencsnecnens 60
Alert Email Received From Kibana Log.........icivveeiicnsvnerccscnnncccccnnnes 60
Metricbeat Containers Running Status..........cccceevereccscnnrccsssnnrecsssnssees 61
Metrics Collected By Metricbeats in Dashboardcccoevvuerecennnnnes 61
Metrics Collected by Metricheat 1.......ueiiiiivvericiscnnnccsssnnnecssssansecsssnnnes 62

X

Figure 50:

Figure 51:

Figure 52:

Figure 53:

Figure 54:

Figure 55:

Figure 56:

Figure 57:

Figure 58:

Figure 59:

Figure 60:

Figure 61:

Figure 62:

Figure 63:

Metrics Collected by Metricheat 2.........coveeevuenseensuenssnecsnenssnessaecsnecaees 62
Logs Collected by Metricbeat 1 Shown in Kibana.............coneeruuenen. 63
Logs Collected by Metricbeat 2 Shown in Kibana............cconeenunenen. 63
Metrics Shown on WordPress 1 Server by HTOP................coueenuueeneen. 63
Metrics Shown on WordPress 2 Server by HTOP...............ccuueenuueeneen. 64
Slow SQL Query Resul......iiieiiiisiinisniniencssnncssencssnncsssnncssssecsssencnes 64
Slow SQL Query Raw L0ZS ...covuenruenseensnensnessaecssnessaessanesssessansssnesssasnne 65
Slow SQL Query Logs Shown in Kibana.........ceenneenneecnenssnensenenne 65
Alert Message of Slow SQL Query Via Email Notification................. 65
An E-Commerce Store Built On Kadence Theme...............ccerueerueeeneen. 67
User Behaviour Raw Logscvienueenienninnsncnsecnsnensenssnensecsssecsaesssneens 67
User Behaviour Stats Shown in Dashboard............cueevuerveensnecsnnennnen 68
User Behaviour Stats Calculated By Shell Script.......coeevveenneennencnnene 68

User Behaviour Logs Shown in Kibanacciiiciivvnniccsssnecccscnnneees 68

LIST OF ABBREVIATIONS

Centralised Log Management CLM

Elasticsearch, Logstash, Kibana ELK

Content Management System CMS

Online Analytical Processing OLAP

Advanced Persistent Threats APT

Security Information and Event Management SIEM

x1

CHAPTER 1 INTRODUCTION

1.1 General Background

In recent years, the popularity of WordPress has surged, making it one of the most widely used
content management systems (CMS) globally. Many developers and website administrators
manage multiple WordPress sites simultaneously, especially within small to medium-sized
enterprises (Toddplex, 2016). Due to its user-friendly interface and rich ecosystem of plugins,
many non-technical users feel confident managing their sites (Murphy et al., 2021). However,
this ease of use can lead to overconfidence, resulting in risky actions such as installing insecure
plugins or modifying unfamiliar settings, potentially compromising the website’s security and
performance. Even minor issues can cause user dissatisfaction or financial losses (Sunil et al.,
2023). From a developer’s perspective, it becomes crucial to establish mechanisms for quickly
identifying and resolving system anomalies or bugs introduced by non-technical users. Log
tracking and analysis are key techniques in this regard, enabling early detection of errors or
warnings and providing actionable insights for system optimisation and user experience
improvements. Most industries maintain real-time alert tools to ensure system safety and
stability, and make this a top priority (He et al., 2022). However, log management in practice
presents numerous challenges, particularly in industrial contexts. These include the high
volume and complexity of log data, heterogeneous log formats, and difficulties in correlating
and understanding log content. System maintenance, along with troubleshooting, becomes
excessively complex when key data is hidden deep within extensive log records. Finding the
specific reason behind an issue within such datasets proves both time-consuming and
frustrating. The practice of manual monitoring through traditional methods tends to be
inefficient and laborious, and the complexity of modern IT systems makes manual log

interpretation increasingly impossible. These approaches create space for human mistakes and

oversight which raises the probability of security breaches, resource exhaustion and outdated
software component usage. Many standard logging tools fail to effectively display complex
system data through clear visual presentations (Sunil et al., 2023). A centralised log
management system serves as the main solution to address the problems of log monitoring.
The ELK stack represents the most widely used solution because it consists of Elasticsearch,
Logstash and Kibana as an open-source suite (Ahmed et al., 2020). The ELK system provides
real-time data analysis through interactive dashboards that display visualised metrics which
makes it valuable for understanding system health and user behaviours. This research evaluates
ELK stack implementation in distributed WordPress networks to assess its effectiveness for
website monitoring as well as fault detection and user behaviour analysis.

1.2 Significance of the Study

This research aims to construct a project that decreases administrative and developer workloads
through ELK stack implementation to improve security issue detection, server resource and
performance monitoring, and application log utilisation.

1.3 Scope of Study

The research examines log data management between WordPress websites using the ELK stack
while concentrating on security vulnerability detection, system resource monitoring, and
application logs tracking. The study does not explore content management systems outside of
WordPress or WordPress installations with extensive custom modifications. The study will use
a comparative method to evaluate ELK performance against standard manual log monitoring
practices to demonstrate specific system management and efficiency benefits.

1.4 Research Problem

Maintaining multiple WordPress websites distributed across different servers or environments
presents a range of operational challenges. Developers and website administrators often face

difficulties in identifying security risks, analysing performance metrics, managing system

2

resources, and analysing user behaviours through application logs. Manual monitoring
techniques are not only labour-intensive but also prone to oversight, particularly as the number
grows. This study investigates whether the ELK stack - comprising Elasticsearch, Logstash,
and Kibana - can provide a more efficient and reliable approach for addressing these recurring
challenges. The focus is on assessing how ELK can support the centralised management and
real-time monitoring of multiple WordPress instances.
1.5 Research Questions
e In what ways does the ELK stack improve the detection of security threats across
multiple WordPress sites when compared with the traditional manual monitoring
method?
e To what extent does the ELK stack enhance visibility of system resource usage in
distributed WordPress environments?
e How effectively can the ELK stack assist in analysing user behaviour to support data-
driven decision-making?
1.6 Research Objectives
The primary objectives of this research are as follows:
To investigate how the Elastic Stack (Elasticsearch, Logstash, and Kibana) can be applied to
monitor and manage distributed WordPress environments.
To design and implement a centralised logging system that collects and analyses logs from
multiple WordPress websites.
To evaluate the effectiveness of ELK Stack in detecting potential security vulnerabilities,
resource usage, and application logs analysis in a distributed environment.
To conduct experiments that simulate different usage and attack scenarios, and measure the

system's performance, scalability, and responsiveness.

To propose recommendations for WordPress developers and administrators on how to integrate
ELK Stack into their systems to enhance operational efficiency and security monitoring.
1.7 Thesis Organisation
This thesis is organised into five chapters; each designed to systematically address the research
problem and contribute to the achievement of the research objectives.

e Chapter 1 — Introduction
This chapter introduces the research topic, outlining the background, problem statement,
research significance, objectives, and the scope of the study. This establishes the foundation
for the subsequent investigation into centralized logging and monitoring systems for distributed
WordPress environments.

e Chapter 2 — Literature Review
This chapter critically reviews existing studies related to the Elastic Stack components -
Elasticsearch, Logstash, and Kibana - as well as their deployment in distributed system
monitoring. Additionally, it examines previous research on WordPress performance, security
monitoring techniques, and distributed logging challenges. Gaps in the current knowledge are
identified to position this research within the broader academic context.

e Chapter 3 — Research Methodology
This chapter details the methodological approach adopted in this study. It describes the design
of the experimental environment, the configuration of the ELK Stack for log collection and
analysis, and the techniques used to simulate distributed WordPress operations. Methods for
evaluating performance, anomaly detection, and scalability are also articulated.

e Chapter 4 — Results and Discussion
This chapter presents the empirical findings derived from the experiments. It analyses system

performance metrics, evaluates the effectiveness of the ELK Stack in detecting anomalies and

security events, and discusses the scalability of the proposed solution. The results are critically
compared with existing benchmarks and research objectives.

e Chapter 5 — Conclusion and Future Work
This chapter presents the main research findings and contributions. The study encountered
specific challenges, which are discussed in this chapter, together with suggested directions for
future research that focus on improving centralised monitoring systems for extensive

distributed WordPress networks.

CHAPTER 2 LITERATURE REVIEW

2.1 Importance of Log Data Analysis

System logs serve as event records which document multiple system occurrences. System The
system generates events whenever users initiate or terminate operations and applications start
or terminate, and software gets installed or uninstalled and users modify the system clock and
finish authentication protocols. System administrators receive security breach alerts through
logs which track all unauthorized access attempts (Ahmed et al., 2020). System component
behaviour becomes most accessible for analysis through monitoring its operational activities.
System runtime logs enable developers and administrators to detect bugs, errors, and abnormal
outputs while simultaneously helping to detect security threats and possible intrusions (Svacina
et al., 2020). The output of logging statements creates unstructured printed text which results
in time-ordered text-based data collection.

A log message contains several items, which include system variables and parameters such as
hostname and username, together with message level (INFO/DEBUG/ERROR), IP address and
other items that present semantic information through plain text words (Wang, 2023). Logs
have been widely adopted in software system development and maintenance. In the IT industry,
it is a common practice to record detailed software runtime information into logs (Zhu et al.,
2023).

According to Wang et al. (2020), applying web log mining technology to the development of
e-commerce systems not only enhances user experience and supports personalised
recommendations, but also assists companies in understanding customer intent, identifying
potential users, improving website infrastructure, and advancing the overall e-commerce
industry. For effective comparison across different log files, log analysis systems must be

capable of parsing content within the specific context in which it was generated. Overall, log

analysis contributes not only to better business decision-making but also to improved service
quality.

2.2 Centralised Log Management Overview

In current IT systems especially those with distributed systems of many servers and services,
centralised log management (CLM) has become a key strategy. Kent (2018) points out that
when log data is brought together in one location, administrators can better understand system-
wide behaviour. The system provides administrators with enhanced visibility which enhances
their capabilities for problem debugging system protection and performance evaluation.
Through this system administrators gain access to a unified interface that enables them to
search, filter and view logs. The current method of log management through one interface
stands in sharp contrast to traditional manual approaches which required server-by-server log
searches. The traditional approach to log management proves inefficient while simultaneously

raising the chances of errors and oversight in complex system deployments.

2.3 The ELK Stack in Log Management

The ELK Stack, consisting of Beats, Elasticsearch, Logstash and Kibana, serves as a popular
open-source framework for implementing CLM. Elasticsearch operates as the central storage
system, which also functions as a search engine for log data. Logstash serves as the component
that gathers logs before transforming them, while Kibana enables users to visualise metrics and
patterns through real-time system activity monitoring. Beats serve as a lightweight data
shipping system that collects logs and metrics from different sources before sending them to
Logstash or Elasticsearch for additional processing. The ELK workflow pipeline functions as
depicted in Figure 1 when it operates. The Beats library enables installation on target servers
to send log data directly to Elasticsearch or Logstash for data processing. Elasticsearch handles
data indexing and storage operations while Kibana enables users to execute queries and create

visualisations. Instead of accessing individual servers to diagnose issues, administrators can
7

use Kibana’s dashboards to search and analyse logs across multiple systems at once. This
approach not only saves time but also enhances accuracy by enabling the correlation of events
from different machines within the same timeframe, helping to uncover underlying issues that
may span across Services or servers.

Figure 1: ELK workflow pipeline

‘- Visualize
/—D _—
v

elasticsearch kibana
}_
o . Parse &
@ [Enhance
-

\
|
|
|
| L’ -
|
|

HEARTBEAT |

S B R P logstash

Note. The figure illustrates the ELK workflow pipeline. From What are Beats?, by
Elasticsearch B.V., 2025 (https://www.elastic.co/guide/en/beats/libbeat/current/beats-

reference.html). Copyright 2025 by Elasticsearch B.V.

2.2.1 Beats Module

The Elastic Stack includes lightweight data collection tools called Beats which efficiently
gathers data from log files network traffic, and system metrics before sending it to Logstash or
Elasticsearch for additional processing and analysis. Beats consist of multiple modules, each
designed for a specific type of data source, and are primarily used for forwarding and

centralising log data. Notably, Beats only collects data without performing any processing,
8

making them highly efficient. One of their key advantages is their low CPU and memory

consumption, which ensures minimal impact on business servers (Xu et al., 2024).

For example, Filebeat is a lightweight log shipper that reads data from local or remote log files

and forwards it to Logstash or directly to Elasticsearch. Other tools include Metricbeat, which

collects system and service metrics, and Packetbeat, which captures network traffic data, Etc.

Table 1: Beats library from the Elastic

Log Type Log Module Beat framework

Audit data Auditbeat Collects audit framework data
and monitors file integrity

Log files Filebeat Ships log files from various
sources

Service availability Heartbeat Checks uptime and monitors
service availability

System metrics Metricbeat Collects CPU, memory, and
disk usage data

Network traffic Packetbeat

Analyses network packets for
performance and

troubleshooting

Winlogbeat Winlogbeat - Lightweight

Windows event logs
shipper for Windows event logs

Note. Adapted from https://www.elastic.co/guide/en/beats/libbeat/current/beats-

reference.html. Copyright 2025. Elasticsearch B.V.

2.2.2 Structured vs. Unstructured Data

In modern IT systems, data is generally categorised as either structured or unstructured.
Structured data refers to information that adheres to a predefined data model and is often stored
in relational databases such as MySQL or Oracle. It includes data types like names, dates, or
numerical values that are easily searchable using SQL. In real life, the objects we search for
are not always relational data. The goal of a search is to quickly locate the information that is
most relevant to a user's needs. Given that both structured and unstructured data coexist in
modern systems, the ability to accurately and efficiently retrieve information from both types
has become increasingly important.

In contrast, unstructured data lacks a consistent format and cannot be easily stored in traditional
relational databases. This category includes text documents, images, videos, and, most
relevantly, log files. Because of its inconsistent nature, unstructured data poses challenges for
storage, indexing, and analysis using traditional tools. Figure 2 shows the difference between

structured data and unstructured data in storing and retrieving data.

10

https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html
https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html

Figure 2: Comparison between Structured and Unstructured Data

Structured Data (@) Unstructured Data

Can be displayed
in rows, columns and
relational databases

Numbers, dates
and strings

Estimated 20% of
enterprise data (Gartner)

Requires less storage

Easier to manage
and protect with
legacy solutions

Cannot be displayed
in rows, columns and
relational databases

Images, audio, video,
word processing files,
e-mails, spreadsheets

80% Estimated 80% of
> enterprise data (Gartner)

E Requires more storage

More difficult to
manage and protect
with legacy solutions

Note. The figure illustrates the comparison between structured and unstructured data. From

Structured vs Unstructured Data: An Overview, by MongoDB, Inc., 2025

(https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-

unstructured). Copyright 2025 by MongoDB, Inc.

2.2.3 Elasticsearch Module

Elasticsearch is a powerful, distributed, open-source engine built on Apache Lucene that serves

as the core component of the ELK Stack. It is optimised for search and analytics across large-

scale datasets, functioning as both a scalable data store and a vector database. Elasticsearch

allows for fast indexing, storage, querying, and real-time analysis of structured and

unstructured data (Elastic Stack, 2025).

11

https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-unstructured
https://www.mongodb.com/resources/basics/unstructured-data/structured-vs-unstructured

To address the challenges posed by unstructured data, Elasticsearch treats each piece of data
as a document, which is then indexed for rapid querying. It applies an inverted index structure
that maps each word or term to its location in the document set. During the indexing process,
Elasticsearch tokenises the data, removes stop words (such as “a”, “the” or “and”), and stores
relevant tokens in a highly searchable format. This makes it particularly well-suited for log
analysis, full-text search, and real-time data exploration at scale.

Figure 3: How does Elasticsearch work?

Document 1

N

The bright blue

butterfly hangs i Inverted index
on the breeze. Stopword list
ID Term Document
; = | — 1 best 2
B a e 2 blue 1,3
ocument 2 an
around 3 bright 1,3
‘ ?Ver!' 4 butterfly 1
or
It's best to from = breeze 1
forget the great in =3 forget 2
sky and to is :>
B =" it 7 great 2
every wind. not 8 hangs 1
on 9 need 3
one .
Document 3 the 10 retire -
. to 4 11 search 3
under
‘ 12 sky 2,3
Under blue —_— ——:> 13 wind 2
sky, in bright
sunlight, one
need not

search around.

Note. The figure illustrates the process of how Elasticsearch works. From Elasticsearch, the

advanced Search and Analytics Engine, by Kartikay Sawhney, 2019

(https://medium.com/@kartikaysawhney1506/elasticsearch-the-advanced-search-and-

analytics-engine-8ebbe7dd3913). Copyright 2019 by Kartikay Sawhney.

As illustrated in Figure 3, when a term is queried in Documents 1, 2 and 3, Elasticsearch can
quickly look up the term and locate it in the inverted index and retrieve the list of documents

that contain that term. During the indexing process, stop words - such as "the", "is", and "and"

12

https://medium.com/@kartikaysawhney1506?source=post_page---byline--8ebbe7dd39f3---------------------------------------
https://medium.com/@kartikaysawhney1506?source=post_page---byline--8ebbe7dd39f3---------------------------------------

- are typically filtered out to optimise the efficiency and accuracy of the search, minimise the
unnecessary matches, making it a powerful tool for handling large volumes of textual data and
providing relevant search results in near real-time.

2.2.4 Logstash Module

Logstash is a free and open-source framework designed for collecting and parsing a large
variety of both structured and unstructured data types. By unifying data collection and
transformation, Logstash allows for real-time analytics and enables structured insights from
diverse input formats (Logstash Introduction | Logstash Reference [8.17] | Elastic, 2025). As
a plugin-based event forwarder, it ingests data from multiple sources, processes it, and then
ships it to various destinations. These input plugins capture data from CSV files, TCP/UDP
sockets, and HTTP APIs. Once the data is ingested, Logstash applies filter plugins to handle
event processing, these filters transform the incoming data by removing unwanted elements,
enriching the events with additional information, and preparing them for output to the
designated targets (Bajer, 2017). In the data filtering process, the Grok filter stands as a popular
choice because it uses predefined patterns to extract structured information from unorganised
log entries. This approach enables users to efficiently parse and transform raw logs into a more
readable and analysable format. Users can also achieve advanced data processing through the
Ruby filter, which allows the embedding of custom Ruby scripts to implement complex
transformations (Doan & Iuhasz, 2016). By default, Logstash sends the processed data to
Elasticsearch as its primary output destination. However, it also supports transmitting data to
other targets, such as CSV files, relational databases, and external platforms including Azure
Machine Learning (Bajer, 2017).

2.2.5 Kibana Module

Kibana functions as the visual interface of the ELK Stack to enable users to interactively

explore and display data through a wide array of visual formats - such as bar charts, tables,

13

heatmaps, and geographic maps. Kibana operates efficiently with large volumes of data
through its web-based interface which enables users to create dynamic dashboards. Users can
interact with real-time data through the platform without programming because queries operate
using JSON-like syntax. Bhatnagar et al. (2020) state that this functionality provides users with
better access to deep system insights which leads to improved decision-making.

2.2.6 Application of ELK Stack

ELK Stack showcases practical applications in various industrial fields. In their research on a
Uday and Mamatha (2019) demonstrated how the system facilitates healthcare projects by
aggregating logs from multiple sources to achieve real-time visualisation. This assists
engineers in quick identifying which system issues require immediate attention based on their
needs, locations and severity. Therefore, this process accelerates maintenance response,
reduces system downtime. In a simulation of communication network system, ELK has been
used to manage different real-time data streams. Through Kibana's visualization feature users
can detect anomalies and monitor network traffic more effectively (Yang et al., 2022).

ELK serves as an effective cybersecurity solution to detect advanced persistent threats (APT)
because it enables real-time log processing and anomaly detection and machine learning
integration which allows security teams to detect threats rapidly (Stoleriu et al., 2021). Laingo
Nantenaina and Zo (2024) conducted research which proved that OLAP technologies work
well with ELK through Elasticsearch indexing to enhance the speed of large dataset
classification and analysis tasks under multidimensional scenarios analysis.

The log management system for Docker environments proposed by Chen et al. (2020)
combines ELK with Kafka to track logs in real-time and filter them structurally while
enhancing DevOps workflows through visualization. Smith and Jones (2020) demonstrated
Elasticsearch's real-time query functionality through Logstash data pipelines and Kibana

dashboards. Lee et al. (2021) confirmed the system's ability to scale for deployments of both
14

small and large enterprises. The ELK solution provides organizations with a budget-friendly
alternative to Splunk which enables robust security log analysis and visualization capabilities
(Son & Kwon, 2017). The ELK applications provide outstanding value to systems that require
quick decision-making insights.

2.4 Security Monitoring through Log Analysis

Security monitoring operations in the present era heavily depend on system log analysis as their
fundamental operational component. System log analysis helps identify irregular system
activities that could indicate criminal behaviours including unauthorized access attempts and
malware infections. Log analysis according to Ahmad and Patel (2019) enables the discovery
of security risks that were previously undetected. The ELK Stack generates automated alerts
for recognized attack patterns and behavioural anomalies when its configuration is correct. The
ELK system enhances its threat detection and response features through its integration with a
Security Information and Event Management (SIEM) system (Yang et al., 2022).

The log analysis system developed by Ahmed et al. (2020) protected cloud applications. The
system collected logs through Log4j before it implemented dual detection mechanisms to
detect SQL injection attacks. The system performed log analysis through two independent
methods which included both Bayesian classifier-based log categorization and visual pattern
matching for security analysts. The research showed that application security requires instant
analysis together with multiple detection approaches.

2.5 Resource Utilisation Monitoring

Resource consumption monitoring such as CPU, memory and disk storage usage helps prevent
system bottlenecks and outages. The ELK Stack enables the collection and visualisation of
such metrics, which allows administrators to detect unusual patterns or resource strains more
easily. Brown (2020) highlighted that system health information exists within log data and

ELK stack delivers exceptional value for distributed architectures because it unifies logs from

15

multiple servers that handle workload. The system enables better resource planning and system
tuning through its ability to combine performance indicators from different nodes.
2.6 Overview of WordPress
WordPress launched in 2003 has evolved into a leading content management system (CMS).
WordPress stands out for its user-friendly interface and broad plugin selection which enables
users to create everything from basic blogs to advanced e-commerce websites. Murphy et al.
(2021) stated that WordPress powers approximately 35% of internet content worldwide and is
possibly the most used content management system, serving as the back end for hundreds of
millions of websites and accounting for 60.3% of all content management systems in use.
WordPress provides an intuitive content editing interface that allows users to create and publish
content without needing to master complex programming languages (Achar, 2021). With its
"Block Editor," users can quickly build page content through drag-and-drop operations, such
as adding text, images, and videos, without writing HTML or CSS code. This simplified editing
approach dramatically lowers the barriers to website creation, making it accessible for non-
technical users to manage website content.
As shown in Figure 4, the WordPress Block Editor consists of several key components:

1. Inserter: A panel for users to insert predefined blocks into the content canvas.

2. Content canvas: The content editor, which serves as the workspace where content is

created and organised using blocks.
3. Settings Panel: A panel that allows users to configure the settings of a selected block or

adjust the settings of the entire post.

16

Figure 4: WordPress Block Editor

< Saved Preview [ETGIEHS m :

Post Black X

o paragraph

Add title e e s ek

Type { to choose a block

Golor

Text

Backeround

Typoaraphy

Note. The figure illustrates the primary elements of the Block Editor. From Block Editor
Handbook, by WordPress.ORG, 2019 (https://developer.wordpress.org/block-editor/). in the

public domain.

One of the significant advantages of WordPress is its plugin system, which allows users to add
various website features, such as SEO optimisation, e-commerce, and social media integration.
WordPress has an extensive plugin library, enabling users to install plugins as needed to extend
the website's functionality. Each plugin provides its service based on user needs, such as
enhancing search functionality, managing user permissions, and enabling electronic payments.
Figure 5 illustrates some of the most popular WordPress plugins commonly used to expand a

website’s capabilities.

17

Figure 5: Popular WordPress plugins

Popular plugins

; Elementor Website Builder -
Mare Than Just a Page Builder
b & & & @& rlnlik:]

The Elementor Website Builder has it all: drag and drop page builder, pixel

perfect design, mobile responsive editing, and more. Get started now!

A% Elementor

||, 10+ million active installation “' Tested with 6.7.2

y Yoast SEO
L 8 & & & @rrke
L2

Improve your WordPress SEQ: Write better content and have a fully optimised

WordPress site using the Yoast SEO plugin.

A% Yoast

1ly 10+ million active installation §A} Tested with 6.7.2

WooCommerce
L 8 & & @ e

Everything you need to launch an online store in days and keep it growing for

years. From your first sale to millions in revenue, Woo is with you.

A% Automattic

tive installations w Tested with 6.7.2

Akismet Anti-spam: Spam Protection
L & & 8 & 'ii]

The best anti-spam protection to block spam comments and spam in & contact

form. The most trusted antispam solution for WordPress and WooCommerce.

A3 Automattic

||, &+ millicn active installations w Tested with 6.7.2

Contact Form 7
L6 8 & SwaEiy

Just another contact form plugin. Simple but flexible.

&4 Takayuki Miyoshi

I, 10+ million active installations R Tested with £.7.2

Classic Editor
L8 8 & & i

Enables the previous *classic" editor and the cld-style Edit Post screen with

TinyMCE, Meta Boxes, etc. Supports all plugins that extend this screen.

A% WordPress.ong

1ly 10+ million active installations “{ Tested with £.7.2

LiteSpeed Cache
n L8 8 & & Jei

All-in-gne unbeatable acceleration & PageSpeed improvemnent: caching,

image/CE5/S optimisation...

A% LiteSpeed Technalogies

i, &+ million active installations w Tested with 6.7.2

a WPFaorms — Easy Form Builder for WordPress —
._57=, Contact Forms, Payment Forms, Surveys, & More
wpforms el e 400

The best WordPress contact form plugin. Drag & Drop form buikder to create

beautiful contact forms, payment forms, & other custom forms.

A% Syed Balkhi

||, &+ million active installations w Tested with 6.7.2

Note. The figure illustrates the popular plugins of WordPress. From Plugins, by

WordPress.ORG, n.d. (https://en-nz.wordpress.org/plugins/). In the public domain.

WordPress also offers powerful theme customisation options, allowing users to tailor a
website’s appearance to match branding guidelines or meet specific functional requirements.
Themes control the overall design, layout, and visual style of a site, providing both prebuilt

templates and extensive customisation possibilities.

18

Figure 6 showcases some of the most popular WordPress themes widely adopted for creating

visually appealing and professional websites.

Figure 6: Popular WordPress themes

Latest Community Commercial Block themes

Search themes jel

Layout ~ Features « Subjects ~
o
Bog A commisment w0 innovation H el I °
- i ! ‘mﬁw
oy s 41 et P ’
Twenty Twenty-Five Twenty Twenty-Four Hello Elementor

O s

: Mindblown: a blog about philosophy.
Youridea matters

| Nicomachean Tao TECnlng | Am Because We
= 3 L Ethics by (Daodejing] by Are by Fred L
- Aristatie Lao Teu Hord
&
....... [ron— Eow Fonisia Dok iy bk secemnendtiens?
Astra Twenty Twenty-Three Twenty Twenty-Two
Cerarp = o R == s =
EVERYTHING YOU NEED
The works of Berthe AND 50 MUCH HORE
Morisot, 1800s-era LS

French painter

Note. The figure illustrates the popular themes of WordPress. From Themes, by

WordPress.ORG, n.d. (https://en-nz.wordpress.org/themes/). In the public domain.

The high flexibility of plugins and themes allows WordPress to be applied to nearly any type
of website, whether it is a simple blog, a complex business website, or a feature-rich e-

commerce platform. For example, Taylor Swift's official website (shown in Figure 7), Disney
19

Books (Figure 8), Sony Music (Figure 9), and Time magazine (Figure 10) are all built on
WordPress. These examples highlight WordPress’s versatility. By leveraging a combination of
plugins and themes, developers can customise websites to meet a wide range of needs,

significantly enhancing flexibility and adaptability.

20

Figure 7: Official website of Taylor Swift

Shop Now / Archive / Dirccted Projects / Sign Up ——

1>

-

THE TORTURED
POETS DEPARTMENT
AVAILABLE NOW

STREAM / DOWNLOAD |

STORIE

SHOP OFFICIAL STORE

swop sHOP

e

snop

ARCHIVE

Tl S

i) ﬁlklarfALBUM

Taylor Swift e
Midnights |roits niearryes

TAYLOR'S VERSION

REPUTATION

zayior swift
ever»7zore ALBUM

DIRECTED PROJECTS

SIGN UP TO RECEIVE UPDATES

.

[susmzT

21

Note. The figure illustrates the official website of Taylor Swift. From Tayler Swift, by

taylorswift.com, n.d. (https://www.taylorswift.com/). Copyright 2019 by Taylor Nation, LLC

Figure 8: Official website of Disney Books

‘Dragans, Magic. and Dark Socrs

Latest Releases

s B g 1

#

= |

T, — v@ﬁ S e %2
T v f =)

.

meineo | IO BEST |
MIND OF EVERYTHING |

Batare vou Leap Wi
#Bulgok.
o _Wearible!
= o
< NATIONAL PA
Reprocucita Actviy shecs

v a3

Note. The figure illustrates the official website of Disney Books. From Disney, by

books.disney.com, n.d. (https://books.disney.com/). Copyright by Disney.

Figure 9: Official website of Sony Music

23

https://books.disney.com/

/ we

Labels

COLUMBIA
ALAMO ARISTA AWAL

COLUMBIA .
O
o

NASHVILLE

Featured Videos

Lil Nas X~ 1 CHRIS

News

Sony Music Entertainment India and Tiger Baby Announce New Tiger
Baby Records Jaint Venture
Mar 27, 2025

Acclaimed Flmmakers tive Powerhouse Behind Goke Studic lo Lead New
S i 1e tist Collabe turbai, 27 Mar 5 - Son,

ion M

Read More »

Sony Music Latin Iberia Announces New Structure in Brazil
Mar 27, 2025

Fernands Gabral de Mallo Named GEO of Sony Music
27, 2 Latin Ik iay annou

03] 5,

tertainment Brazi Miami, FL [March
025] — Sony Music new org onal st its

Read More =

First Details Revealed of Film in Conjunction With the Oasis Live ‘25
Tour

Mar 13, 2025

As th

su

w's widly anticipated Oasis Live ‘25 tour approaches, Oa
ade cl be

Road More »

RCA Records Greater China Partners with Rising Chinese Indie Hip Hop
Label IRIS Chengdu

Mar 10, 2025

Lau

Rend More »

Top Latin Record Label Rancho Humilde, Sony Music Latin, and Sony’s
Columbia Pictures Join Forces to Release ‘CLIKA'

Mar 04, 2025

A Groundbreaking
Culture Set Augus

Raad More

More News »

Back To Top

©d ¥ fin

ravary ko | coevreHT o

Tyla — Water

Have a Question
for Sony Music?

Visit our FAQ page for
information regarding

+ Our dama policy

+ Royalties

+ Employment & intarnship opportuniies
« Pross contacts & more

24

Note. The figure illustrates the official website of Sony Music. From Sony Music, by
sonymusic.com, n.d. (https://www.sonymusic.com/). Copyright by 2025 SONY MUSIC

ENTERTAINMENT.

Figure 10: The official website of Time magazine

25

http://www.sonymusic.com/
http://www.sonymusic.com/

ke e et ma

WML SHIILI D KHOW

26

Note. The figure illustrates the official website of Time magazine. From 7Time, by time.com,

n.d. (https://time.com/). Copyright by 2025 TIME USA, LLC.

2.7 WordPress Management Challenges

Although WordPress is a powerful platform, its widespread usage makes it a common target
for hackers. WordPress's most common security risks are outdated software, insecure plugins
and themes, insecure passwords, SQL injection, cross-site scripting (XSS), brute force, and file
inclusion exploits. (Yi et al., 2024). All WordPress websites are susceptible to brute force
attacks to enumerate users and their passwords with the WPSCAN tool (Shah & Ayoade,
2023). The WordPress community regularly releases security updates and patches to fix known
vulnerabilities, and administrators must keep the core, plugins, and themes up to date to
minimise security risks (Releases — WordPress News, 2025). Additionally, installing
appropriate security plugins, implementing strong password policies, and regularly backing up
website data are standard measures to protect WordPress website security.

2.8 Existing Solutions for WordPress Monitoring

Popular WordPress monitoring plugins like Wordfence and Jetpack focus mainly on security,
uptime monitoring, and backup management. While these tools offer essential protective
functions, they lack built-in support for comprehensive logging and log analysis (Jetpack Vs
Wordfence, 2021). As Murphy (2021) identified, finding a free-tier WordPress plugin that
effectively detects plugin vulnerabilities is impossible. Moreover, these solutions typically
offer limited customisation and do not allow developers or administrators to define what log
data should be collected, how it should be processed, or how alerts should be generated. This
lack of flexibility and visibility makes them unsuitable for scenarios that require in-depth

monitoring, especially across distributed WordPress environments.

27

2.9 Gaps in the Current Research

While the effectiveness of the ELK stack in general system monitoring has been well-
documented, limited research specifically applies ELK to the context of distributed WordPress
site management. Few studies address how ELK can streamline security vulnerability detection,
resource usage monitoring, and user behaviour analysis based on application logs in the
WordPress environment. This gap highlights the need for targeted research exploring the
integration of ELK into WordPress maintenance workflows.

2.10 Summary

The existing literature establishes the importance of centralised log management and the
capabilities of the ELK stack in enhancing system monitoring and security. However, specific
applications of ELK in the management of distributed WordPress websites remain
underexplored. This research aims to fill this gap by investigating how ELK can effectively
support developers and administrators in maintaining multiple WordPress installations more

efficiently and securely.

CHAPTER 3 METHODOLOGY

3.1 Introduction

The research follows Design Science Research (DSR) principles to develop and assess a
centralised logging system for distributed WordPress environments which uses ELK Stack
(Elasticsearch, Logstash, Kibana). The research follows DSR because it focuses on improving
practical artefacts through design iterations to resolve real-world problems, such as effective
log management across multiple WordPress sites.

WordPress's content management system is one of the most popular tools globally, with
millions of websites under its management. The complexity of environment monitoring and

maintenance grows significantly when deployments increase in scale, whether they involve

28

multiple servers or websites. System administrators face difficulties when working with
scattered log data because it makes performance metric tracking, security issue detection, and
user behaviour analysis inefficient and delayed. This research develops a central logging
solution powered by the ELK Stack to solve these problems. The platform offers advanced
capabilities for log aggregation and analysis, as well as visualisation that provides a scalable
solution over basic shell-based log management approaches. The system works to increase
transparency and operational efficiency while enabling data-driven choices by linking ELK to
distributed WordPress systems.

The research demonstrates the artefact design, followed by implementation details and
performance evaluation through experimental approaches. It evaluates ELK-based solution
performance against traditional shell scripting methods to explain the benefits of usability and
flexibility, along with actionable insights. The research aims to establish a framework that
developers and administrators can use to manage distributed WordPress systems more
effectively.

3.2 Design Science Research Overview

The research implements Hevner et al.'s (2004) Design Science Research (DSR) framework
through its six essential activities, starting with problem identification, followed by solution
objectives definition, and then design and development stages, demonstration, evaluation, and
communication. The systematic development and evaluation of IT artifacts for real-world
problem solutions follows the stages outlined in this framework. The following sections of this
report correspond to each activity, starting with problem identification in Section 3.3.

3.3 Problem Identification Stage

A systematic literature review was performed to determine research gaps, which led to defining
a specific problem statement. The focus was on the ELK (Elasticsearch, Logstash, Kibana)

stack, distributed logging systems, and performance monitoring in WordPress environments.

29

The review covered the period from 2018 to 2024, using academic databases such as Google
Scholar, IEEE Xplore, and ACM Digital Library. Search terms included combinations like

29 <¢

“ELK stack,” “Elasticsearch logging,” “WordPress performance monitoring,” “centralised
logging,” and “distributed logging system,” enhanced with Boolean operators to improve
relevance.

Inclusion criteria prioritised peer-reviewed journal articles and conference papers in English
that explored ELK implementations in web applications or CMS platforms like WordPress.
Studies unrelated to distributed systems or outdated models were excluded.

The findings revealed that while the ELK stack is widely applied in enterprise-level logging
systems, few studies address its application in distributed WordPress deployments, especially
regarding illegal request detection, resource usage imbalance, and user behaviour analysis
across multiple WordPress instances.

This literature gap highlights the need for a focused investigation into how the ELK stack can
support real-time, centralised monitoring of multiple WordPress sites, forming the basis of the
current study.

3.4 Solution Objectives Stage

The solution objectives stage defined the conditions required to address the research questions
regarding the capabilities of the ELK (Elasticsearch, Logstash, Kibana) stack in managing
distributed WordPress environments. These objectives were directly aligned with the core
research aim: to explore how ELK can improve detection, visibility, and insight generation
compared to traditional manual methods.

The primary objective was to design and develop a centralised logging solution based on the
ELK stack to enhance the detection of security threats across multiple WordPress sites. This
required system administrators to establish automated log collection procedures for distributed

WordPress websites while setting up rule-based mechanism.

30

The project's second goal involved improving system resource monitoring capabilities through
ELK pipeline integration of CPU information and memory metrics and disk I/O and database
performance logs. The system enables real-time and historical analysis of site data which helps
administrators perform performance tuning and capacity planning.

Another goal of this project involved using log information to evaluate WordPress website user
activity through observations of login events and page visits as well as feature utilisation. The
system aimed to convert raw log data into useful information through Kibana visual dashboards
and queries to support site administrators in their data-based choices.

The objectives can be accomplished through developing an ELK system that links multiple
WordPress sites for demonstrating log data collection and processing with visualisation
capabilities for security, system performance and behavioural analysis. The evaluation will
include simulated conditions to measure ELK performance in comparison to traditional manual
monitoring approaches.

This artefact exists as a practical tool for WordPress system administrators while also acting
as academic research regarding centralized logging and CMS performance monitoring systems.
3.5 Design and Development Stage

The ELK-based logging system with multiple WordPress sites integration occurs during the
Design and Development phase. The artefact showcases ELK's ability to automate log
collection while simultaneously enhancing threat detection and providing better resource
visibility and supporting user behaviour analysis. This stage defines the architectural
framework together with technology selection and deployment procedures to build a
operational distributed WordPress prototype. System administrators require scalable designs

with real-time capabilities and user-friendly interfaces.

31

3.5.1

Architecture Overview

The system applies Docker’s containerisation technology to build WordPress websites and

ELK (Elasticsearch, Logstash, Kibana) logging framework.

The system consists of the following key components (see Figure 11):

A nginx reverse proxy simulates a load balancer or gateway in real deployments.

Two independent WordPress containers (WordPress1 and WordPress2), each paired
with a dedicated MySQL instance (MySQL1 and MySQL2).

Filebeat agents (Filebeat] and Filebeat2) are configured per site to forward application-
level logs (e.g., user activity and MySQL slow query logs) to Logstash.

Metricbeat agents (Metricbeatl and Metricbeat2) are deployed alongside each
WordPress container to monitor container-level metrics such as CPU usage, memory
consumption, and disk I/O.

A central Logstash container, responsible for parsing and enriching log data before
indexing it into Elasticsearch.

A single-node Elasticsearch service that stores logs and metrics data, enabling full-text
search and aggregations.

A Kibana dashboard interface visualises system behaviour, analyses performance

trends, and monitors potential security threats.

32

Figure 11: System Architecture

Browser

'

Nginx
L A
WordPress1 + MySQL 1 WordPress2 + MySQL 2
Y Y
Filebeat 1 Filebeat 2
Metricbeat1 Metricbeat2
Filebeat-Kibana > Logstash |-

Y

Elasticsearch

Y

Kibana

All components are orchestrated using Docker Compose and connected via a custom bridge
network (wp_network) to facilitate inter-service communication. Log and configuration files
are managed via mounted volumes, ensuring observability and traceability of the system’s
inner workings. Its modular, scalable design enables easy replication of additional WordPress
sites and Beats agents, making it suitable for testing centralised logging scenarios in multi-site
WordPress deployments.

3.5.2 Artefact Configuration Overview

This configuration file orchestrates multiple services, including two independent WordPress
sites, their respective MySQL databases, Nginx reverse proxy, and various Elastic Stack
components such as Filebeat, Metricbeat, Logstash, Elasticsearch, and Kibana. The system

operates within a Docker bridge network to enable seamless inter-service communication.

33

3.5.2.1 WordPress and MySQL Services

The artefact simulates a distributed WordPress environment by deploying two separate
WordPress instances, WordPress1 and WordPress2, each connected to a dedicated MySQL
database container (MySQL1 and MySQL?2). This design reflects a realistic multi-site scenario,
allowing independent operation, logging, and monitoring for each WordPress instance (see
Figure 12). In the configuration of WordPress 1, a custom volume is mounted at wp-
content/plugins/custom-logs/user-activity.log, which allows a plugin to record user activity
logs persistently. This log file later serves as input for Filebeat to forward to the ELK stack
(see Figure 13). Meanwhile, MySQL1 is configured with the “slow-query-log” flag and “long-
query-time=1" setting, enabling the capture of any SQL queries that exceed one second. These
slow query logs are written to “/var/log/mysql/slow.log”, which is also mounted as a Docker
volume for persistent access (see Figure 14). The second WordPress instance, WordPress2,
follows a similar structure without custom logging. The database container, MySQL2,
maintains the standard configuration and stores data through a dedicated volume (see Figure

15).

Figure 12: WordPress1 Service in Docker Compose

34

Figure 13: WordPress2 Service in Docker Compose

Figure 14: MySQL 1 Service in Docker Compose

Figure 15: MySQL2 Service in Docker Compose

Together, these components form the foundational layer of the artefact's monitoring system,

enabling later log collection and performance analysis.

3.5.2.2 Reverse Proxy with Nginx
A reverse proxy is configured using Nginx to enable unified access to all services (see Figure
16). The Nginx proxy container listens on port 80 and uses a mounted “nginx.conf” file to route

requests based on domain names.

35

As shown in Figure 17, the configuration defines upstream servers for WordPressl,
WordPress2, and Kibana. Requests to wordpressl.arp.com, wordpress2.arp.com, and
elk.arp.com are forwarded to their respective containers. This reverse proxy mechanism plays
a vital role in the artefact by mimicking a real-world infrastructure and allowing seamless

monitoring of distributed WordPress instances and the centralised ELK interface.

Figure 16: Nginx Service in Docker Compose

36

Figure 17: Nginx Configuration

listen 3@
server_name wordpressl.arp.com
location f
proxy ss http://wordpressl
t_header Host $host
t_header X-Real-IP $remote_addr
proxy_set_header X-Forwarded-For $proxy_add x forwarded_ for

server {
n 80
server_name wordpress?.arp.com
location /

http://wordpress2

t_header Host $host
t_header X-Real-IP $remote_ addr
t_header X-Forwarded-For $proxy add_x_forwarded_for

server {
listen 3@
server_name elk.arp.com
location f
proxy_pass http://kibana
cader Host $host
t_header X-Real-IP $remote_ addr
t_header X-Forwarded-For $proxy add_x_forwarded_for

3.5.2.3 Log Collection: Filebeat

Three Filebeat containers were deployed to collect and ship logs from the WordPress
environment to Logstash. Filebeatl is configured to collect both user activity logs from
WordPress 1 (user-activity.log) and slow query logs from MySQL 1 (/var/log/mysql/slow.log)
(see Figure 18). The Filebeat2 instance is set up for WordPress 2 and reads configuration from
a separate Filebeat2.yml file, ensuring independence in log parsing (see Figure 19). Finally,
filebeat-kibana, shown in Figure 20, collects Docker-related logs for the Kibana interface,

enabling monitoring of access and error events.

37

Figure 18: Filebeatl Service in Docker Compose

Each Filebeat instance uses a dedicated configuration file (e.g., filebeatl.yml) and is connected
to the shared wp network, allowing communication with WordPress, Elasticsearch, and
Logstash services.

38

3.5.2.4 Resource Monitoring: Metricbeat

Two Metricbeat instances (Metricbeat] and Metricbeat2) are deployed for each WordPress
environment to monitor system-level metrics such as CPU, memory, and I/O usage (see Figure
21). These services also rely on mounted configuration files and forward metrics to the ELK
stack. This enables real-time performance tracking of individual WordPress containers,

allowing for performance benchmarking and resource usage analysis.

Figure 21: Metricbeat Services in Docker Compose

3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash, Kibana

To enable centralised log aggregation and analysis, this project integrates the ELK stack,
composed of Elasticsearch, Logstash, and Kibana (see Figure 22). Elasticsearch is the core data
store, indexing incoming logs from multiple WordPress and MySQL sources. Logstash acts as
the data processing pipeline, receiving logs from Filebeat, parsing and filtering them using
custom grok patterns and conditionals, and then forwarding structured data to Elasticsearch.
Kibana provides a web-based interface for visualising and analysing the aggregated log data.

By accessing elk.arp.com, users can search logs, build dashboards, and detect anomalies or

39

performance issues across WordPress instances in real-time. The reverse proxy configuration
(see previous section) ensures convenient access via friendly domain names.

Figure 22: Elasticsearch Service in Docker Compose

3.5.3 Log Collection Pipeline
3.5.3.1 Filebeat Configuration
Filebeat is deployed alongside each key component (WordPress 1, WordPress 2, and Kibana)
as a lightweight log shipper. Each Filebeat instance is configured with specific inputs to collect
relevant log files and forward them to Logstash for processing.
For WordPress 1 (see Figure 23), the filebeat.yml file includes three types of inputs:

o Container logs: It monitors Docker container logs under “/var/lib/docker/containers”

and filters lines containing the domain wordpressl.arp.com, tagging them with the

custom field “log_source: apachel”.

40

o User activity logs: A local file “/var/log/user-activity.log” is monitored and labelled
with “log source: user-activity”, enabling later distinction in Logstash and
Elasticsearch.

e MySQL slow query logs: Filebeat captures logs from ‘/var/log/mysql/slow.log”,
applying a multiline pattern to combine multi-line entries beginning with a numeric
date. This input is tagged as “log_source: mysqll-slow-query”.

For WordPress 2 (see Figure 24), a similar configuration captures container logs filtered by the
keyword wordpress2.arp.com and tags them with “log_source: apache2”. For Kibana, Filebeat
uses Docker metadata enrichment and a conditional “drop _event” processor only to retain logs
from the Kibana container (arp-kibana-1). The logs are tagged as “log_source: kibana-stdout”.
All Filebeat instances are configured to send output to the centralised Logstash service via port

5044, enabling further filtering and transformation.

Figure 23: Filebeat 1 Configuration

41

Figure 24: Filebeat 2 Configuration

3.5.3.2 Logstash Configuration

Logstash is configured to serve as the central processing unit in the logging pipeline. It listens

to incoming logs from Filebeat via the Beats input plugin on port 5044. Once logs are received,

Logstash uses conditional filters to parse and enrich the data based on its source, ensuring each

log type is properly structured before indexing into Elasticsearch.

In the filter stage, Logstash distinguishes logs based on the “log source” field set earlier by

Filebeat:

For Apachel and Apache2 logs (from WordPress containers), the
standard % {COMBINEDAPACHELOG} pattern is applied using the Grok plugin to
extract common fields such as IP address, timestamp, HTTP method, URL, and status
code.

For user-activity logs, a custom Grok pattern is defined to parse structured fields like
“msg”, “timestamp”, “level name”, “user_ip”, “request id”, and “duration”.

For mysqll-slow-query, no parsing is required; instead, a new field alert with value
“slow_query_alert” is added to mark the event as potentially problematic.
Additionally, if the message field matches a pattern containing “AlertName”, such as

those from Kibana alerts, it is parsed to extract “alert name” and “log_message”. An

alert field with value “kibana_alert” is then appended.

In the output stage, logs are indexed into Elasticsearch with a dynamic index name pattern:

42

wordpress-[log_source]-logs-[date].
This approach organises logs by their source and date, making them easy to retrieve and analyse
in Kibana. Furthermore, Logstash includes an email alert mechanism:
e If a log entry is marked as “slow_query_alert”, an email is sent to the administrator
with details about the slow query.
o Similarly, “kibana alert” entries trigger an alert email containing the alert message
details.
This setup allows the system to centralise and structure log data and actively notify

administrators when critical issues arise.

43

Figure 25: Logstash Configuration

.

!
filter {

if [fields][log_source]
grok

1
¥
mutate

T else if [
mutate

T else if [
grok

e

%
¥

mutate

if [alert]
email

3.5.4 Custom Logging Extensions

3.5.4.1 Custom Plugin: Slow Query Simulator

I developed a lightweight WordPress plugin called Slow Query Simulator to simulate
performance bottlenecks and evaluate logging and monitoring capabilities. It executes an SQL
query using SELECT SLEEP(5), forcing a 5-second delay at the database level. The plugin
records the start and end time using microtime(true) and outputs the total execution duration.

This allows for the controlled generation of slow queries, which can be detected and logged by

44

monitoring tools such as Filebeat and Logstash. This is beneficial for verifying whether the
ELK stack can accurately capture and visualise database performance anomalies.

Figure 26:Slow Query Simulator Plugin

add_action('init’,
$wpdb;

if (disset($_GET[
$start = microtime(

$wpdb->query(
$end = microtime(

echo " ed in " . ($end - $start) . se

3.5.4.2 Custom Plugin: User Activity Logger

To monitor front-end user behaviours on the WordPress site, I developed a User Activity
Logger plugin. This plugin leverages the “Monolog” library to record structured logs in a
custom format compatible with the Logstash GROK filter.

These user behaviours include scrolling past 50% of the height, page stay duration time, button
click times, and accordion toggles. Each action is logged with key metadata such as timestamp,
user IP, request ID, and interaction duration time. Logs are written to user-activity.log. These

logs are later shipped via Filebeat and parsed by Logstash for further analysis in Kibana.

45

Figure 27: User Activity Log Plugin

$logFormat =
$logFormat .

$handler StreamH.
$handler->setFormatter(

$log-
$log-

log_user_activity on_click() {
log_scroll_event{ 3message) {
log_page_stay_duration() {
log_accordion_toggle() {

log click ewvent() {

}

add_action('init", °

> add user activity scripts()
}

add_action(wp

3.5.5 Kibana Configuration

3.5.5.1 Index Creation in Kibana

To facilitate structured querying and visualisation in Kibana, I created a series of index patterns
under Stack Management. These include: “metricbeat-wordpressl*”, “metricbeat-

3

wordpress2*”, “metricbeat-apachel*”, “metricbeat-apache2*”, “wordpress-mysqll*”, and
“wordpress-user-activity-logs*”. Each pattern corresponds to logs collected from specific
components across different virtual machines. For example, the “metricbeat-* indices are used

for system and service metrics, while “wordpress-user-activity-logs*” stores custom logs from

the WordPress plugin. Defining these patterns enables efficient filtering, dashboard creation,

46

and time-based analysis, which are essential for performance comparison and anomaly

detection.

Figure 28: Index Patterns Created in Kibana

= . Stack Management Index patterns

{3 Management

Index patterns

Ingest @

Ingest Pipelines . .
Create and manage the index patterns that help you retrieve

Data @
Index Management
Q Search...
Index Lifecycle Policies
Snapshot and Restore
Pattern ‘T
Rollup Jobs
Transforms metricbeat-wordpress1* Default

Remote Clusters
metricbeat-wordpress2*

Alerts and Insights @

- *
Rules and Connectors wordpress-apache

Reporting
wordpress-apache2*
Machine Learning Jobs

wordpress-mysql1*
Kibana @

Index Patterns wordpress-user-activity-logs*

Saved Objects

Tags Rows per page: 10

3.5.5.2 Alerts Rule Configuration

In Kibana, I configured an alert rule to record when a certain threshold of POST requests was
exceeded. As illustrated in Figure 29, the configuration of a Kibana alert involves four key
steps. First, the execution interval is defined to determine how frequently the rule is evaluated
(e.g., every minute). Second, the specific resource being monitored is selected, in this case,

the “wp-login.php” file, which is often targeted in brute-force attacks. Third, the trigger

47

condition is configured, specifying that the alert should be activated if the number of requests
to this endpoint exceeds five times per minute. Finally, a message template is composed to
present the message content (see Figure 30).

Figure 29: Alert Rule Created in Kibana

© Management = Rules and Connectors

48

Figure 30: Alert Rule Configuration

Edit rule

Name Tags (optional)

Login too frequently

Check every [/ Motify
- St

1 o minute ~ Only on status change o

Log threshold

Alert when the log ation exceeds the threshold. Documentation

WHEN THE count OF LOG ENTRIES e
WITH request.keyword IS /wp-login.php 5] bl
AND verb.keyword IS POST =l >

@ Add condition

IS more than 5 e

FOR THE LAST 1 minute

GROUP BY clientip.keyword

Actions
~ of) Login request too freguency [S]
Run when Fired r
Server log connector Add connector
Login request too frequency w
Level
Error e
Message B

AlertName: {{rule.name}} o
Ca ncel -

3.5.5.3 Dashboard Creation in Kibana

To analyse user interactions on the WordPress site, I created a custom dashboard in Kibana
using “wordpress-user-activity-logs*” as the source index (see Figure 31). One key metric
displayed on the dashboard is the number of unique visitors, which is approximated by counting
the number of distinct “request _id” values. Each “request id” serves as a session identifier

generated per user visit, enabling estimation of session-based traffic (see Figure 32).

49

Figure 31: Count of Visitors Created in Dashboard

B Metric &
wordpress-user-activity-logs* ~
Metric
Count of visitors X

0

Count of visitors

Figure 32: Count of Visitors Configuration in Dashboard

Metric X

Quick functions Formula

Select a function

Average Median
Count Minimum
Percentile
0 Sum
Last value Unique count
Maximum

t of visitors

Select a field

request_id.keyword ™

Add advanced options

Display name Count of visitors

To gain deeper insights into user engagement, I utilised a vertical bar chart to visualise visitor
stay time (see Figure 33). In this chart, the X-axis represents the unique count of “request _id”,
which corresponds to individual user sessions (see Figure 35), while the Y-axis shows the sum

of the duration field, which records the total time each visitor spent on the page (see Figure 34).

50

Figure 33: User Duration Time Created in Dashboard

sias Barvertical stacked 8= Do dn
h— < siil Bar vertical stacked

wordpress-user-activity-logs*

Horizontal axis

User

=2l o
il Vertical axis

No results found :
® Sum of duration

@ Add or drag-and-drop a field

Break down by

@ Add or drag-and-drop a field

v Quamnctinne

Figure 34: User Duration Time Vertical Axis Configuration in Dashboard

Vertical axis X

Quick functions Formula

Select a function

Average Median

Count Minimum
Percentile
Sum

Last value Unique count

Maximum

Select a field

duration e

Add advanced options

Display name Sum of duration

51

Figure 35: User Duration Time Horizontal Axis Configuration in Dashboard

Horizontal axis X
Select a function
Date histogram Intervals

Filters Top values

Select a field

request_id.keyword s
Number of values 3
Rank by @ Sum of duration ~
Rank direction Descending o
» Advanced
Display name User

To analyse how many users were actively engaging with the content, I applied a filter on the
field “msg.keyword” with the value: “User scroll down to the 50% position” (see Figure 36).
This ensures we only analyse logs that record scroll behaviour. Then, I calculated the unique
count of “request_id”, which represents individual sessions or visitors (see Figure 37).

Figure 36: Count of Users Scroll Down 50% Created in Dashboard

[v Search KQL @ v Last 15 minutes Show dates C Refresh

© | msg.keyword: User scroll down to the 50% position x |+ Add filter

wordpress-user-activity-l.. v sso B Metric o Metric &
1 sewenieid haes wordpress-user-activity-logs* ~
Filter by type 0 v Metric

Records Count of users scroll down 50%

\ Available fields o
There are no available fields that

contain data.

Try:

Count of users scroll down 50%

52

Figure 37: Count of Users Scroll Down 50% Configuration in Dashboard

Metric *

Quick functions Formula

Select a function
Average Median

Count Minimum

Percentile

Sum
Last value Unique count
Maximum
Select afield

request_id.keyword

Add advanced options

Display name Count of users scroll down 50%

Value format Default o

To measure user interaction through clicks, I applied a filter on the field “msg.keyword” with
the value “User triggered click event”. Then I set the horizontal axis to display “request id”
(representing individual visitors, see Figure 38), and the vertical axis to count the number of
logs matching each session (see Figure 39). This allowed me to visualise how many times each
visitor clicked during their session.

Figure 38: Users Triggered Click Event Times Created in Dashboard

= @ oesooars Edit visualization Inspect DownloadasCSV ~ Cancel ~Savetolibrary @ Save and return

[®)~ msg: User triggered click event KQL [v Last15 minutes Show dates [EECRLEIEN

® | msgkeyword: User triggered click event x |+ Add filter

wordpress-user-activity-l.. v sss 1i1 Bar vertical stacked v §= Do ey)

sist Bar vertical stacked v &
QU Search field names wordpress-user-activity-logs* v
Filter by type 0 v

Horizontal axis
Records

User
~ Available fields © o

] Vertical axis

There are no available fields that

contain data. No results found
= Count of records
Try:
+ Extending the time range
+ Changing the global fiters @ Add or dran-and-dron a field

53

Figure 39: Users Triggered Click Event Times Configuration in Dashboard

Vertical axis X

Quick functions Formula

Select a function

Average Median

Count Minimum
Percentile
Sum

Last value Unique count

Maximum

Select a field

Records ~

Add advanced options

3.5.6 Brute-Force Detection Script for WordPress Login Attempts

A simple shell script was implemented to monitor potential brute-force attacks targeting the
WordPress login endpoint. This script analyses the Docker container logs to identify IP
addresses that have made excessive login attempts to “/wp-login.php”. Specifically, it extracts
all POST requests to this endpoint, counts the number of occurrences per IP address, and
outputs any IP with more than five attempts (see Figure 40). This lightweight detection can be
extended to automatically block malicious IPs using firewall rules or intrusion prevention

systems.

54

Figure 40: Shell Script to Calculate Brute-Force Times

p count_wp_log

CONTAINER_ID="ff

CURRENT_TIME
THRESHOL

docker 1 2>81
php" \
ESHOLD™ *

3.5.7 User Behaviour Log Analysis Script

To verify the accuracy of the dashboard data, I wrote a Bash script that analyses raw logs from
user-activity.log (see Figure 41). The script filters logs from the past hour, extracts key fields
such as “request_id”, “msg”, and “duration”, and summarises user actions per session. It counts
click events, scroll events (specifically "scroll down to 50%"), and accumulates total stay

duration for each visitor.

55

Figure 41: Shell Script to Analysis User Behaviours

" "$LOGFILE"

3.6 Evaluation Stage

This evaluation aims to assess the effectiveness and reliability of the proposed logging and
monitoring system across three functional components: brute-force attack detection and
alerting, system performance and slow query monitoring, and user behaviour analysis. Each
component was tested through practical scenarios to verify data collection, visualisation, and

system responsiveness.

56

3.6.1 Brute-Force Attack Detection and Alerting

To evaluate the system's ability to detect brute-force login attempts, simulated attacks were
conducted by repeatedly sending POST requests to “/wp-login.php” using automated tools. The
ELK stack successfully captured these attempts through logs collected by Filebeat. A custom
Bash script was used to aggregate IP addresses with excessive failed attempts.

Elast-alert was configured to trigger an email alert if an IP exceeded five login attempts within
a short timeframe. The delay from attack detection to email delivery was roughly estimated at
10 - 20 seconds, demonstrating that the alerting mechanism is timely and practical for intrusion
detection in real-world use cases.

3.6.2 System Performance and Slow Query Monitoring

The system monitoring process utilised Metricbeat to track CPU and memory usage metrics
for Apache, MySQL and WordPress services. The system forwarded data to Elasticsearch
before Kibana dashboards displayed the information.

A simulated SQL query with intentional delay (SELECT SLEEP(5)) was executed to generate
a slow query log for slow query analysis. Filebeat processed the logs before Kibana displayed
them in its visual interface. The dashboard displayed query results within less than thirty
seconds from query execution to prove its capability to identify performance bottlenecks
through real-time detection.

3.6.3 User Behaviour Analysis

The system collected user behaviour data through structured logs that contained user ID
information along with timestamps, event types (clicks, scrolls, page stays) and duration
measurements. A Bash script was written specifically for this project to calculate user ID-based
metrics, including click counts, scroll events, and total user duration.

The results were compared with visualisations created in Kibana using filters and aggregations.

Metrics like the number of users who scrolled past 50% of the page and the frequency of clicks

57

events were consistent between the script output and the Kibana dashboards. This validated the
system’s ability to interpret and visualise user interaction patterns accurately.
3.6.4 Summary
Across all three modules, the evaluation confirmed that the ELK-based logging system can:
e Detect and alert on brute-force login attempts in near real-time.
e Monitor system resource usage and effectively identify slow database queries.

e Analyse and visualise user behaviour patterns for performance and UX insights.

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Introduction to Experimental Setup

This experiment was designed to explore how the ELK stack improves log analysis, monitoring,
and user insight in distributed WordPress environments. All services, including two separate
WordPress sites, their MySQL databases, and the ELK stack, were deployed using Docker
containers to simulate a realistic, scalable setup. For security threat detection, I simulated brute-
force login attempts, I also integrated email alerts for suspicious requests. To monitor system
resources, Metricbeat was used to track CPU and memory usage across WordPress containers,
MySQL slow queries were enabled and forwarded to ELK using Filebeat. For user behaviour
analysis, a custom plugin was created to log user actions, these logs were sent to ELK to help

analyse interaction patterns.

58

4.1.1 Experimentation on Security Monitoring

The experiment successfully demonstrated the ELK stack's capability to detect and respond to
suspicious login behaviour on a WordPress site. A simulated brute-force attack generated six
consecutive “/wp-login.php” post requests from the same IP address. These events were
captured in the raw Docker logs (see Figure 42) and processed using a custom shell script,
which accurately identified the excessive login attempts (see Figure 43). The same events were
visualised in Kibana, confirming that the logs were correctly ingested and parsed (see Figure
44). The Watcher rule was triggered upon detecting the threshold breach (see Figure 45), and
an alert email was sent automatically (see Figure 46). This verified that the security monitoring
pipeline, from log collection to alert delivery, was functioning correctly and in real time.

Figure 42: User Login Records in Apache Log

172.19.0.1 - - [10/May/2025:10:06:
WebKit/537.36 (KHTML, 1ike Gecko)
172.19.0.1 - - [10/May/2025:10:06:
wWebKit/537.36 (KHTML, Tike Gecko)
172.19.0.1 - - [10/May/2025:10:06:
wWebkKit/537.36 (KHTML, Tike Gecko)
172.19.0.1 - - [10/May/2025:10:06:
wWebkit/537.36 (KHTML, Tike Ge

172.19.0.1 - - [10/May/2025:10:06:
wWebKit/537.36 (KHTM Tike Gecko)
172.19.0.1 - - [10/May/2025:10:06:
webKit/537.36 (KHTML, 1ike Gecko)

06 +1200] "POST /wp-login.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

08 +1200] "POST /wp-login.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

11 +1200] "POST /wp-Tlogin.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

13 +1200] "POST /wp-Tlogin.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

15 +1200] "POST /wp-Tlogin.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

18 +1200] "POST /wp-login.php HTTP/1.

Chrome/136.0.0.0 safari/537.36"

/d/weltec/arp

/count_wp_Tlogins.sh
72.19.0.1 6

"http:
"http:
"http:
"http:
"http:/

"http:

//wordpress1.
//wordpress1.
//wordpress1l.

//wordpressl.

vordpressl.

//wordpress1.

Figure 44: User Login Logs Appeared in Kibana

= @ oiscover Options New Open Share Inspect B save
BV Ssear KL [v May10,2025@10:00:00.0 - May 10,2025@10:30:000 [ECRIY
© | roquest: fwp-toginphp x || ttpversion: 10x | + Addfiiter
Wwordpress-apachel* \/ s = 6 hits @ Chart options

QU search field names

Filter by type 0 v

~ Available fields El

— May 1 10:00:00.000 - May 10, 2025

arp..con/wp-Login.php” “Mozilla/5.0

10:06:13 +1200] "POST /w php HTTP/1.0" 208 2363 "http://wordpre

¢ clientip ison.log log.offset: 7,202 message: 172.19.6.1 - - [10/K

0:06:11.609 @version: 1 agent.ephemeral id: c9e7852e-9e86-41c

essage > May 1, 2625 € 10:06:11.60 httpversion: 1.0 request: /wp-login.php Etimestamp: May

164bccé agent.name: 4c4d3seicbes agent.type: filebeat agent.v - bytes: 2363

agent. hostnane elcbes agent.id: f1dbscds-7

1 ecs.version: 1.12.8 fields.log_source: apachel host.name: 4cdd3Selcbeé ident
d7b b 73 16652967/ F10f5 57b3ea7a673 5 1e65a967-

clientip: 172 input.type: container

log.file.path: /var/lib/docker/containers/ff10f57ca1eased

json.log log.offset: 6,978 message: 172.19.0.1 - - [1 16:06:11 +1200] "POST /wp-login.php HTTP/1.6" 208 2363 "http://wordpressl.arp.c ogin.php" "Mozilla/s.8

> May 18, 2625 € 10:06:89.378 httpversion: 1.0 request: /wp-login.php Etimestamp: May 5 @ 10:06:09.378 @version: 1 agent.ephemeral id: coe78s2e- 143822674

agent.hostname: 4c4d3seicbes agent.id: f1dbscos-7816- 6abccé agent.name: dcdd3seicbes agent.type: filebeat ages 7.0 auth: - bytes: 2363

clientip: 172.19.6.1 ecs.version: 1.12.0 fields.log_source

be6 ident: - input.type: container
5a96F/Ff10f57c81ea6 7bd669c3057b3e87067376abd68a05ac284e1e65a96F -

log.file.path: /var/lib/docker /containers/Ff10f57ce1e 7067376

+1200] "POST /wp-login.php HTTP/1.0" 208 2363 "http://wordpressi.arp.con/wp-login.php" “Mozilla/s.e

json.log log.offset: 6,664 message: 172.19.0.1 - - [10/M

Figure 45: Alert Message Stored in Kibana Log

{"type":"log", "@timestamp":"2025-05-10T10:07:07+12:00", "tags":["error", "plugins", "actions"], "pid":7, "message":"Server log: - AlertNam
e: Login too frequently;- LogMessage: 172.19.0.1 - 12 log entries have matched the following conditions: request.keyword equals /wp-1

ogin.php and verb.keyword equals POST;
{"type": "response", "@timestamp":"2025-05-10T10:07:34+12:00", "tags": [],"pid":7, "method": "post", "statusCode":200, "req": {"url":"/api/ui_

Figure 46: Alert Email Received from Kibana Log

Alert: from kibana o inbox x a8 ©

jigang.guo@gmail.com 10:07 (O minutes ago) ¥ @ “
“b tome v

An alert from Kibana has been triggered with the fallowing details:

{"type""log","@timestamp":"2025-05-10T10:07:07+12:00","tags":["error", "plugins","actions"],"pid":7,"message":"Server log: - AlertName: Login too
frequently;- LogMessage: 172.19.0.1 - 12 log entries have matched the following conditions: request.keyword equals /wp-login.php and verb.keyword equals
POST—-"}

& Reply ‘ ' ~ Forward ‘ ‘©‘

4.1.1.1 Discussion

This experiment demonstrated the effectiveness of ELK Stack in real-time security monitoring
for WordPress login activity. The system successfully identified repeated suspicious login
attempts from a single IP address by simulating a brute-force attack. The seamless flow, from
Docker log collection and shell-based preprocessing to Kibana visualisation and Watcher-

triggered alerts, validated the reliability and responsiveness of the ELK pipeline. The timely

60

email alert confirmed that potential threats can be detected and reported automatically,
highlighting ELK’s practical value in enhancing WordPress site security.

4.1.2 Experimentation on Performance Monitoring

This experiment verified that Metricbeat, integrated with the ELK Stack, can effectively
monitor system performance for distributed WordPress containers. As shown in Figure 47,
the “docker ps” command identified two running Metric containers. Their corresponding
dashboards, shown in Figure 48, Figure 49 and Figure 50, display real-time metrics such as
CPU, memory, load, and network traffic. To validate accuracy, “htop” was run inside each
WordPress container. The results (Figure 53 and Figure 54) showed CPU and memory values
consistent with those in the dashboards. Metricbeat logs in Elasticsearch (Figure 52 and
Figure 53) further confirmed successful data collection and transmission. These results
demonstrate that Metricbeat reliably captures and visualises system metrics across multiple
WordPress instances.

Figure 47: Metricbeat Containers Running Status

PS D:\Weltec\arp> docker ps

CONTAINER IP, IMAGE COMMAND CREATED STATUS NAMES

16bea5ad9a8 2 docker.elastic.co/beats/metricbeat:7. " /usr/bin/tini 6 minutes ago Up About a minute arp-metricbeatl-1
292a36255ce | docker.elastic.co/beats/metricbeat:7. " fusr/bin/tin 6 minutes ago Up About a minute arp-metricbeat2-1
abebd6a3bbce elastic/filebeat:7.17.0 "fusr/bin/tini — 6 minutes ago Up 6 minutes arp-filebeatl-1
63Ub918a87Ff elastic/filebeat:7.17.0 " fusr/bin/tini —- 6 minutes ago Up 6 minutes arp-filebeat2-1
8972f11ab1796 wordpress:latest "docker-entrypoint 6 minutes ago Up 6 minutes 80/tcp arp-wordpress1-1
b8lbaclfcac wordpress:latest "docker-entrypoint 6 minutes ago Up 6 minutes 80/tcp arp-wordpress2-1
d0baBl01a2fl docker.elastic.co/logstash/logstash:7.17.0 " usr/local/bin/do: 6 minutes ago Up 6 minutes 0.0.0.0:504l->50U/tcp, 9600/tcp arp-logstash-1
c2bobafllBed docker.elastic.co/kibana/kibana:7.17.0 "/bin/tini — /usr. 6 minutes ago Up 6 minutes .6.0.0:5601->5601/tcp arp-kibana-1
7387558e550f nginx: latest "/docker-entrypoin 6 minutes ago Up 6 minutes .0.0. nginx_proxy
2a3cB5eel317 mysql:5.7 “docker-entrypoint 6 minutes ago Up 6 minutes arp-mysqli-1
25f28afd256e mysql:5.7 "docker-entrypoint 6 minutes ago Up 6 minutes p arp-mysql2-1
383a276617cd docker.elastic.co/elasticsearch/elasticsearch:7.17.8 “/bin/tini — /usr/L." 6 minutes ago Up 6 minutes . arp-elasticsearch-1
PS D:\Weltec\arp>

17.e
17.e

Figure 48: Metrics Collected By Metricbeats in Dashboard

& > G ANotsecure elkarp.com/app/dashboards#/view/Metricbeat-system-overview-ecs?_g=(filters:1(.refreshintervak(pause:!t value:0) time:(from:now-15m.to:now) Q (=] s @ & w E i ® O @ NewChomeawilble

@ elastic

6P Usage Gauge IMetricbent System] ECS Inbound Trafic Matricbent System] ECS utbound Traffic Maticbast System] ECS

332.6B/s 1.8KB/s

0.949% 82.105% 0.885%

lw»ndI:PL/kkealnmeyLMmmmnsy&xm)Ecs Top Hosts By Memory (Reitme) Metricbest SystemEcs
I
[

61

Figure 49: Metrics Collected by Metricbeat 1

Systom Navigation [Metrcbeat System] ECS.

System Overview | Host Overview | Containers overview

CPU Usage Gauge [Metricbeat System] ECS

0.667% 79.49%

‘Swapusage [Metriebeat System] ECS

20 Tip MeticheatSystem) ECS.

TIP: To select another host, go to the System Overview dashboard and double-click 3 host name.

Inbound Traffc Metrichest System] ECS

Inbou

25

nd Traffic

2B/s

sferred 219.4KB

Memory usage

8.5GB 2

Memory 10.6GB

Processes

CPU Usage Metricbeat System) ECS

per10seconds

Network Trafic (Packets) (Metricheat System] ECS

o sorir 0.8%

D

0.

885%

‘System Losd Metricbaat System] ECS

1s0s%

ox

ox
3%
671

kIO (Bytes) (Metricbeat System] ECS

o Fr oo
 Cache 1368
o Usea 508

Network Trafic (Bytes) et

0sis
o

cbest System] ECS

Outbound Trsfic Metricbest System] ECS Packetioss [Metricbeat System] ECS

Outbound Traffic In Packetloss

1.8KB/s 0

Total Transfe;

DiskUsage [Metricbeat System] ECS

Noresults founa

m 007
osm o022
o 15m 043
waom wnm w00 s a0 esm 0
per10seconds
® writes

per10 scconds

o noound 252805
» Outsound -1.5K81s

Figure 50: Metrics Collected by Metricbeat 2

Systemavigation Metricbeat ystem] ECS

System Overview | Host Overview | Containers overview

CPU Usage Gauge [Meticbeat System] ECS

1.239% 7977% 0.23

Tip ericbeatSystem) £CS.

TIP: To select another host, go to the System Overview dashboard and double-click a host name,

Inbound Trafic Metricbeat System] ECS

Inbound Traffic

331.8B/s

0.885%

Swapusage Metricbstsystm ECS
Memory usage
8.5GB 2 |
30.885% Total Memory 10.6G8 —
P Usage MetichestSysem €05 SystemLoad Mericbes Systam) ECS

Memory Usage [Metricbeat System ECS

Network Trafc (Packets) (Meticbeat System] ECS.

Disk10 (Bytes) Metricbeat System] ECS.

d 289.7KB

Network Traffc (Bytes) (Metricbeat System] ECS

Outbound Traffic

1.8KB/s

d 1.6MB

In Packetloss

Disk Usage [Matricbeat System) £CS.

per10 seconds

o iscung 331885
o Cutsouna 1exers

62

Figure 51: Logs Collected by Metricbeat 1 Shown in Kibana

elastic ¢

@ oscowr o Options New Open Share Inspect B«
BV Search KaL @ v This week Show dates | [EECALE
@ + Add filter

metricheat-wordpress1* === <= 2121 hits @ Chartog

Q search field names 200

Filter by type 0 v
v Available fields 94 202 202 2 202 202 2 o 200 202 o 0 2025-05-0712:00 2 8 12 2 2 2 2 o 2 2
. May 4, 2025 @ 00:00:00.000 - May 10, 2025 ® 23:59:59.999

Time o Document

> May 5, 2625 @ 15:23:28.955 gtimestamp: May 5, 2025 @ 15:23:28.955 agent.ephemeral_id: 9827ddc5-8e8d-479@-beba-6a3164d68d96 agent.hostname: 16beaSa@9asc agent.id: 2dd8c97a-57bc-4639-97b5-1564264d9e5b

i) _trpe agent.name: 16beaSaBdalc agent.type: metricheat agent.version: 7.17.0 ecs.version: 1.12.8 event.dataset: system.filesystem event.duration: 334,076 event.module: system
B @timestamp host.name: 16beaSaB9aBc metricset.name: filesystem metricset.period: 18,800 service.type: system system.filesystem.available: 1,816,506,572, 809
t agentephemeral_id system. filesystem.device_name: /dev/sdd system.filesystem.files: 67,108,864 system.filesystem.free: 1,071,498,928,128 system.filesystem.free_files: 66,941,692
et system. filesystem.mount_point: /etc/hosts system.filesystem.total: 1,881,161,176,832 system.filesystem.type: ext4 system.filesystem.used.bytes: 9.662,248,704
Fi 52: Logs Collected by Metricbeat 2 Sh in Kib
igure 52: Logs Collected by Metricbeat own in Kibana
KoL B v This week show dates [ECRLEIS

w0 = 2122 hits

@ Chart option

Filter by type O v
v Available fields 94 - - S . N . . oo om0 0mensorane eoone 2o
i May 4, 2025 @ 00:00:00.000 - May 10, 2025 @ 23:59:59.999

Time ¢ Document

> May 5, 2625 @ 15:23:29.714 gtimestamp: May 5, 2025 @ 15:23:20.714 agent.ephemeral id: 77488fBa-a156-41b4-b836-9d4d5d2128d4 agent.hostname: 292a36255ce6 agent.id: e4571f3f-7956-44ac-992f-8221eedfcbed
) ype

agent.name: 292a36255ce6 agent.type: metricbeat agent.version: 7.17.6 ecs.version: 1.12.8 event.dataset: system.filesystem event.duration: 478,199 event.module: system
& @timestamp host.name: 292a36255ce6 metricset.name: filesystem metricset.period: 10,600 service.type: system system.filesystem.available: 1,016,506,572,800

t agent.ephemeral_id systen. filesysten.device_name: /dev/sdd system.filesysten.files: 67,168,864 system.filesystem.free: 1,671,498,928,128 systen.filesystem.free files: 66,941,602

e system. filesystem.mount_point: /etc/hosts systen.filesysten.total: 1,081,101,176,832 system.filesystem.type: ext4 systen.filesysten.used.bytes: 9,602,248,704

Figure 53: Metrics Shown on WordPress 1 Server by HTOP

B Administrator: Windows Powe X +

0.17 6.19
1 day, 87:17:07

56 . :00. apache2 -DFOREGROUND
57 o 100. apache2 —-DFOREGROUND
58 o HeR apache2 -DFOREGROUND
59 . :00. apache2 -DFOREGROUND
60 . 100, apache2 -DFOREGROUND
67 root 188 333 :00.87 /bin/bash

238 root 316 88 :00.08 htop

63

Figure 54: Metrics Shown on WordPress 2 Server by HTOP

.07 0.16
1 day, 07:20:07

DFOREGROUND
e2 ~DFOREGROUND
DFOREGROUND
DFOREGROUND
che2 ~DFOREGROUND
2 root
210 root

4.1.2.1 MySQL Slow Query monitoring

Figure 55 displays a captured slow SQL query that took 5 seconds to execute, exceeding the
predefined threshold. The slow query log was successfully recorded (see Figure 56) and parsed
by Logstash. The structured output was visualised in Kibana, as shown in Figure 57, confirming
proper data ingestion and processing. Consequently, an alert email was automatically triggered,
as illustrated in Figure 58, demonstrating the effectiveness of the monitoring and alerting setup.

Figure 55: Slow SQL Query Result

& Cc A\ Not secure wordpressl.arp.com/?do_slow_query=1

Query executed in 5.0016040802002 seconds.

64

Figure 56: Slow SQL Query Raw Logs

,(@time_zone id, , 8);

mysqld, Version: 5.7.44-log (MySQL Community Serwver (GPL)). started with:
Tcp port: Unix socket: /var/run/mysqld/mysqld.sock

Time Id Command Argument

Time:

Userf@Host: root[root] @ [.19.0.6] Id:

Query_ti . Lock_time: @. Rows_sent: Rows_examined:
use wordpr

SET timestam

SELECT SLEEP(5S);

Figure 57: Slow SQL Query Logs Shown in Kibana

= @ oo v

Options New ~ Open Share Inspect B saw

© +Add fiter
wordpress-mysqi1* s = 1 hit

% Chart optior

QU searcn field names

Filter by type 0 v
v Available fields 2 s s — —
Popular May 10, 2025 @ 11:52:09.904 - May 10, 2025 @ 12:07:09.904
t messag

messace Time o Document

> May 18, 2625 @ 12:03:09.945 gtimestamp: May 10, 2625 @ 12:03:69.945 @version: 1 agent.ephemeral id: c9e7852e-9e86-41c7-a33d-883d488a2674 agent.hostname: 4c4d3Selcbe6 agent.id: f1db5c96-7018-439-a077-

748cf164bcce agent.name: dcadaseiches agent.type: filebeat agent.version: 7.17.6 alert: slow_query_alert ecs.version: 1.12.8 fields.log_source: mysqli-slow-query
host.name: 4cdd3selcbeé input.type: log log.file.path: /var/log/mysql/slow.log log.flags: multiline log.offset: 30,446 message: # Time: 2625-85-10T00:03:01.651898Z # UsereHost
root[root] @ [172.19.6.6] Id: 38 # Query_time: 5.091168 Lock_tine: 0.860666 Rows_sent: 1 Rows_examined: © use wordpressi; SET timestamp=1746835381; SELECT SLEEP(S);

tags: beats_input_codec_plain_applied _id: MGOAtSYBqdfeAs2611ca _index: wordpress-mysqli-slow-query-logs-2025.05.18 _score: - _type: _doc

Figure 58: Alert Message of Slow SQL Query Via Email Notification

jigang.guo@gmail.com 12:03 (0 minutes ago) ¥y

tome =

A slow query was detected with the following details: # Time: 2025-05-10T00:03:01.651898Z2
User@Host: root[root] @ [172.19.0.6] Id: 38

Query_time: 5.001168 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use wordpress1;

SET timestamp=1746835381;

SELECT SLEEP(5);

4.1.2.2 Discussion

The experiments confirmed the effectiveness of using Metricbeats and the ELK Stack for real-
time monitoring and alerting in a distributed WordPress environment. Metricbeats successfully
captured system-level metrics from multiple containers, such as CPU, memory usage, load,

and network traffic, with data accuracy validated against the native “htop” tool. This

65

demonstrates the reliability of Metricbeat in providing consistent and actionable system
performance insights.

Additionally, the slow query monitoring setup proved effective in detecting performance issues.
The ELK Stack accurately ingested and visualised slow SQL queries, and the alerting
mechanism functioned as expected by notifying administrators when predefined thresholds
were exceeded. Together, these results showcase ELK’s robust capabilities for both

performance tracking and proactive issue detection in a containerised web environment.

4.1.3 Experimentation on Decision-Making Support Using Custom User Activity Logs

To evaluate user behaviour in this experiment, a typical e-commerce website was built using
the Kadence theme in WordPress (see Figure 59). Four simulated users performed various
browsing actions. Figure 60 displays the original log entries captured during these sessions.
Figure 61 shows the Kibana dashboard visualising key metrics: the number of users who visited
the homepage, clicked promotional buttons, the average time spent on the homepage, and how
many users scrolled to the bottom of the page. These metrics were further verified through a
custom shell script, and the results matched the visualised data (see Figure 62). Additionally,
Figure 63 shows ELK logs confirming the successful ingestion and recording of all user

activities.

66

Figure 59: An E-Commerce Store Built on Kadence Theme

WordPress1 Cart Checkout Home My account Sample Page

Cheer Yourself Up
with a New Print

@ Shipping Perks Money Back Guarantee Customer Service Nontoxic Printmaking
Lorem ipsum dolor £ Lorem ipsum dolor sit amet Lorem ipsum dalor si Lorem ipsum doior sit amet
Q EI'
-—
T-Shirts Mugs Hats
View all View all S View all
F Y

¢ position,tis
% position,td

ed ,timestamp= i . . i ,duration=
on the page,timestamp= I 1] i .19, i s duratis

ed clis ,timestamp= . . ,duration=
on the page,timestamp=. B |1] ser_i eque i yduration=:

67

Figure 61: User Behaviour Stats Shown in Dashboard

H 8 Aiypes v | P Addfromibrary

Count of visitors

3

Count of users scroll down 50%

Figure 62: User Behaviour Stats Calculated By Shell Script

veltec/arp/wpl
§ ./analyse_scroll.sh
Request ID Clicks scrolls Duration
8fel3165bf34d3eb6facl3dd40c84201 4
485571875c9162de624eb677858853b7 2 46
681e6083bf72e638c4a88300ed807ch? 2 43942
ea9lecl19465e30fb6829%eeead0411224 2 193

Figure 63: User Behaviour Logs Shown in Kibana

[v Searct KoL [v May6, 2025 @ 00:00:00.00 - May 6, 2025 @ 22:00:00.00 [EECRLEIE

)+ Add filter
wordpress-user-activity-log.. ~ == <= 80 hits @ Chart options
Q

Search field names

Filter by type 0 v

v Available fields 2

Popular
t message

Time ¢ Document

> May 6, 2025 € 21:30:35.304 grinestanp: May 6, 2025 @ 21:3:35.304 @version: 1 agent.ephemeral id: e7e33225-c197-4799-808c-11cS6bboadad agent.hostname: 9621b382da09 agent.id: c2359368-78a8-471a-a85d-

7200717087c8 agent.name:

216382209 agent.type: filebeat agent.version: 7.1

55 ecs.version: 1.12.6 fields.log_source: user-activity host.name: 9621b382a69
input.type: log level name: INFO log.file.path: /v
66789:30:29.334336+00:00, level_name=INFO, user_ip=172
request_id: 681e6083bf7ae638c4288300ed887ch7 tags: beats._

on the page, tin

1, request_1d=681e6083bf7ac638c4a88300ed8aTCh 5 msg: User stayed on the p

nput_codec_plain_applied timestamp: May 6,

9.334 user_ip: 172.19.6.1 _

> May 6, 2025 @ 21:26:40.262

estanp: May 6, 2

1:26:48.262 @version: 1 agent.ephemeral_id: e7
7c6 agent.name: 820209 agent.type: filebeat agent.version: 7.1
input. ty

06T09:26

4.1.3.1 Discussion
The user behaviour monitoring experiment demonstrated the effectiveness of ELK Stack in

tracking and analysing frontend interactions on a WordPress-based e-commerce site. Key

68

metrics such as homepage visits, promotional button clicks, time spent on the homepage, and
scroll depth were successfully captured by simulating different user sessions. The data
visualised in Kibana aligned with the raw logs and manual verification using shell scripts,
confirming the reliability of the logging setup. These findings prove how users interact with
the system and demonstrate how ELK can help optimise UX and drive data-based marketing
decisions.

4.2 Summary

This chapter analysed the ELK Stack's functionality through security alerting, system
performance monitoring, and user behaviour analytics in distributed WordPress environments.
Security monitoring was validated through a simulated brute-force login attempt, where
suspicious behaviour was detected, visualised, and alerted in real time. Metricbeat proved
effective in capturing and visualising real-time performance metrics such as CPU, memory,
and network usage across multiple WordPress containers. Finally, custom dashboards and log
analysis enabled detailed tracking of user interactions, including visit counts, button clicks,
scroll depth, and session duration. These results demonstrate that the ELK Stack offers a
comprehensive and reliable solution for threat detection, operational visibility, and user

behaviour analysis in dynamic web applications.

CHAPTER S CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research demonstrated that the ELK Stack can effectively monitor and manage distributed
WordPress websites. By implementing a centralised logging and visualisation system, the
study addressed key challenges in security alerting, system performance monitoring, and user

behaviour tracking. The experiments showed that Metricbeat reliably captured system-level

69

metrics across multiple WordPress containers, slow SQL queries were effectively ingested and
alerted on, and user behaviour data could be analysed in real time through visual dashboards.
These findings highlight the ELK Stack’s strong capability to support developers and
administrators in improving the security, performance and maintainability of modern
WordPress-based applications.

5.2 Recommendations and Future Work

Future work could expand on this study by exploring the use of other Beats modules (e.g.,
Auditbeat) for more comprehensive system monitoring. In addition, integrating machine
learning capabilities within the ELK Stack (via Elastic ML) could help automatically detect
anomalies in traffic patterns or unusual user behaviour. More complex user interaction
scenarios and higher concurrency loads could also be tested to evaluate ELK’s scalability.
Another valuable direction would be implementing role-based access control within Kibana
for better multi-user data governance.

5.3 Limitations

While the study demonstrated the core functionality of ELK in a controlled environment, it was
limited to a small number of WordPress instances and simulated user scenarios. The testing
environment lacked high traffic or real-world data variety, which could affect the
generalizability of results. Additionally, alert thresholds were manually defined, which may
not scale well in dynamic production environments. Lastly, the security analysis focused on

login attempts, but did not cover deeper intrusion detection or cross-site scripting (XSS) threats.

70

REFERENCES

Achar, S. (2021). An Overview of Environmental Scalability and Security in Hybrid Cloud
Infrastructure Designs. Asia Pacific Journal of Energy and Environment, 8(2), Article
2. https://doi.org/10.18034/apjee.v8i2.650

Ahmed, F., Jahangir, U., Rahim, H., Ali, K., & Agha, D.-S. (2020). Centralized Log
Management Using Elasticsearch, Logstash and Kibana. 2020 International
Conference on Information Science and Communication Technology (ICISCT), 1-7.
https://doi.org/10.1109/ICISCT49550.2020.9080053

Elastic Stack. (2025). What is Elasticsearch? | Elasticsearch Guide [8.17] | Elastic
[Learn/Docs/Elasticsearch/Reference/8.17]. What Is Elasticsearch? | Elasticsearch
Guide [8.17] | Elastic.
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro-
what-is-es.html

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1), 75-105.

He, S., Zhang, X., He, P., Xu, Y., Li, L., Kang, Y., Ma, M., Wei, Y., Dang, Y., Rajmohan, S.,
& Lin, Q. (2022). An empirical study of log analysis at Microsoft. Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 1465-1476.
https://doi.org/10.1145/3540250.3558963

Jetpack Vs Wordfence: Which Is Better Security Plugin? (2021, December 28).

https://www.malcare.com/blog/jetpack-vs-wordfence/

71

Logstash Introduction | Logstash Reference [8.17] | Elastic. (2025).
[Learn/Docs/Logstash/Reference/8.17].
https://www.elastic.co/guide/en/logstash/8.17/introduction.html

Murphy, D. T., Zibran, M. F., & Eishita, F. Z. (2021). Plugins to Detect Vulnerable Plugins:
An Empirical Assessment of the Security Scanner Plugins for WordPress. 2021
IEEE/ACIS 19th International Conference on Software Engineering Research,
Management and Applications (SERA), 39-44.
https://doi.org/10.1109/SERA51205.2021.9509274

Releases — WordPress News. (2025, March 25). https://wordpress.org/news/category/releases/

Shah, P. G., & Ayoade, J. (2023). An Empricial Study of Brute Force Attack on Wordpress
Website. 2023 5th International Conference on Smart Systems and Inventive
Technology (ICSSIT), 659—662. https://doi.org/10.1109/ICSSIT55814.2023.10060966

Sunil, S., Suresh, A., & Hemamalini, V. (2023). Log Based Anomaly Detection: Relation
Between The Logs. 2023 International Conference on Networking and
Communications (ICNWC(C), 1-5.
https://doi.org/10.1109/ICNWC57852.2023.10127571

Svacina, J., Raffety, J., Woodahl, C., Stone, B., Cerny, T., Bures, M., Shin, D., Frajtak, K., &
Tisnovsky, P. (2020). On Vulnerability and Security Log analysis: A Systematic
Literature Review on Recent Trends. Proceedings of the International Conference on
Research in Adaptive and Convergent Systems, 175-180.
https://doi.org/10.1145/3400286.3418261

toddplex. (2016, August 2). Your business doesn’t need WordPress. Unconventional Website
Advice. https://medium.com/unconventional-website-advice/your-business-doesn-t-

need-wordpress-464c69da34a2

72

Wang, Y. (2023). Design of Visual Log Analysis System. 2023 IEEE International Conference
on Sensors, Electronics and Computer Engineering (ICSECE), 1649-1652.
https://doi.org/10.1109/ICSECES58870.2023.10263397

Xu, S., Meng, Z., & Wang, H. (n.d.). Research and Implementation of Log-Based Anomaly
Detection Platform Based on ELK+Kafka.

Yang, L., Chen, Z., Bai, Y., Zhang, M., & Yu, J. (2022). Research on Data Processing and
Visualization of Simulation System. Proceedings of the 5th International Conference
on Big Data Technologies, 131-134. https://doi.org/10.1145/3565291.3565312

Yi, K. M., Kyaw, L. Y., & Thandar, P. (2024). Enhancing Security of WordPress Websites
built on Virtual Machine Using Cloud Computing Technology. 2024 5th International
Conference on Advanced Information Technologies (ICAIT), 1-6.
https://doi.org/10.1109/ICAIT65209.2024.10754914

Zhu, J., He, S., He, P., Liu, J., & Lyu, M. R. (2023). Loghub: A Large Collection of System
Log Datasets for Al-driven Log Analytics. 2023 IEEE 34th International Symposium
on Software Reliability Engineering (ISSRE), 355-366.

https://doi.org/10.1109/ISSRE59848.2023.00071

73

APPENDICES

This paper's source code and resources are publicly available at the following GitHub

repository: https://github.com/jigangmissyou/arp.git.

74

	Abstract
	Acknowledgements
	Table Of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	CHAPTER 1 INTRODUCTION
	1.1 General Background
	1.2 Significance of the Study
	1.3 Scope of Study
	1.4 Research Problem
	1.5 Research Questions
	1.6 Research Objectives
	1.7 Thesis Organisation

	CHAPTER 2 LITERATURE REVIEW
	2
	2.1 Importance of Log Data Analysis
	2.2 Centralised Log Management Overview
	2.3 The ELK Stack in Log Management
	2.2.1 Beats Module
	2.2.2 Structured vs. Unstructured Data
	2.2.3 Elasticsearch Module
	2.2.4 Logstash Module
	2.2.5 Kibana Module
	2.2.6 Application of ELK Stack
	2.4 Security Monitoring through Log Analysis
	2.5 Resource Utilisation Monitoring
	2.6 Overview of WordPress
	2.7 WordPress Management Challenges
	2.8 Existing Solutions for WordPress Monitoring
	2.9 Gaps in the Current Research
	2.10 Summary

	CHAPTER 3 methodology
	3
	3.1 Introduction
	3.2 Design Science Research Overview
	3.3 Problem Identification Stage
	3.4 Solution Objectives Stage
	3.5 Design and Development Stage
	3.5.1 Architecture Overview
	3.5.2 Artefact Configuration Overview
	3.5.2.1 WordPress and MySQL Services
	3.5.2.2 Reverse Proxy with Nginx
	3.5.2.3 Log Collection: Filebeat
	3.5.2.4 Resource Monitoring: Metricbeat
	3.5.2.5 Centralised Logging Stack: Elasticsearch, Logstash, Kibana

	3.5.3 Log Collection Pipeline
	3.5.3.1 Filebeat Configuration
	3.5.3.2 Logstash Configuration

	3.5.4 Custom Logging Extensions
	3.5.4.1 Custom Plugin: Slow Query Simulator
	3.5.4.2 Custom Plugin: User Activity Logger

	3.5.5 Kibana Configuration
	3.5.5.1 Index Creation in Kibana
	3.5.5.2 Alerts Rule Configuration
	3.5.5.3 Dashboard Creation in Kibana

	3.5.6 Brute-Force Detection Script for WordPress Login Attempts
	3.5.7 User Behaviour Log Analysis Script

	3.6 Evaluation Stage
	3.6.1 Brute-Force Attack Detection and Alerting
	3.6.2 System Performance and Slow Query Monitoring
	3.6.3 User Behaviour Analysis
	3.6.4 Summary

	Chapter 4 EXPERIMENTAL RESULTS AND DISCUSSION
	4
	4.1 Introduction to Experimental Setup
	4.1.1 Experimentation on Security Monitoring
	4.1.1.1 Discussion

	4.1.2 Experimentation on Performance Monitoring
	4.1.2.1 MySQL Slow Query monitoring
	4.1.2.2 Discussion

	4.1.3 Experimentation on Decision-Making Support Using Custom User Activity Logs
	4.1.3.1 Discussion

	4.2 Summary

	chapter 5 CONCLUSION AND FUTURE WORK
	5
	5.1 Conclusion
	5.2 Recommendations and Future Work
	5.3 Limitations

	REFERENCES
	APPENDICES

